Где брать водород для автомобиля

Где все машины на водороде?

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Используя такое же топливо, что и космические двигатели, машины на водороде все еще остаются транспортом будущего.
Прямо сейчас вы можете сесть за руль автомобиля, который не сжигает ископаемое топливо и не выделяет парниковые газы, для движения использует такую же химическую реакцию, что и ракетные двигатели и может проехать в два раза больше, чем Тесла. Они называются автомобилями на водородных топливных элементах. Однако если живете не в Калифорнии, то на дорогах вы их, вряд ли, увидите.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

В наши дни, в качестве альтернативы классическому ДВС, предлагают электромобиль. Однако как машины на водороде, однажды появившись, так и остались, довольно, непопулярной темой будущего, несмотря на то, что они имеют ряд преимуществ: меньший расход топлива и быстрая заправка. Так что же случилось?

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Первое что вам нужно знать: машины на водороде- это электромобили. Мы привыкли думать, что машины на электротяге имеют только аккумулятор, например как Tesla или Nissan Leaf, однако это не совсем так. Несмотря на то, что водород является газообразным топливом, автомобили на топливных элементах имеют электрическую тягу. «Когда мы говорим об электромобилях, то под этим понятием мы подразумеваем обычные гибриды, гибриды с зарядкой от электросети, автомобили на аккумуляторах или на топливных элементах. В общем все то, что имеет электротягу.»- расскказывает Keith Wipke, работник национальной лаборатории возобновляемой энергии.

Но автомобили на топливных элементах совершенно другие, нежели автомобили на аккумуляторах. Например у Tesla Model S в полу располагается огромная батарея, которая хранит заряд электроэнергии. В автомобилях, использующие топливные элементы, электричество производиться под действием электрохимической реакции между топливом, в основном это водород, и кислородом из воздуха. В процессе данной реакции образуется электроэнергия и водяной пар, как побочный продукт. Именно такая реакция и позволяет приводить автомобиль в движение.

Такие танцы между химией и механикой подобны водородно- окислительной реакции в ракетных двигателях с одной лишь оговоркой, что вместо взрыва происходит вырабатывание электроэнергии. И в том и в другом случае, вырабатывается достаточное количество энергии, но без токсичных выбросов, что и делает топливные элементы такими хорошими источниками питания.

Один из способов получения водорода- электролиз. Пропустив электрический ток через воду, последнее будет разделяться на водород и кислород. Однако в промышленности водород получают из природного газа. Данный метод производства называется: паровая конверсия метана и природного газа. Водяной пар, смешиваясь с природным газом под высоким давлением и температурой образуют водород.

Данный процесс выделяет некоторое количество СО2, также и водородное топливо не состоит из 100% водорода, но тем не менее, при производстве количество выбросов, значительно, меньше, чем при сжигании твердых топлив.

В настоящее время, в штате Калифорния действует указ в котором говориться, что по меньшей мере, 33% от всего вырабатываемого водорода, должно производиться из возобновляемых источников.

Множество плюсов, но один минус

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

По мере того, как электрические машины захватывают мир и индустрия электрических автомобилей совершенствуется, тем не менее у водителей остаются две главные проблемы: во-первых, долгое время зарядки, а во- вторых, большинство электромобилей не смогут проехать и половины пути от того, которое сможет преодолеть авто на двс.

Топливные элементы могут решить данную проблему: водород можно закачать в бак, как газ. Вы можете также быстро заправиться, как бензином или дизелем. Дальность хода автомобиля на водороде такая же, как и на классическом топливе. К примеру Toyota Mirai имеет один из самых низких запасов хода и он составляет, примерно, 500 км на одном баке, когда Tesla Model 3 имеет запас хода на полной зарядке, примерно, 350 км.

«При заправке водородом движутся молекулы. Пока у вас достаточно давления и пути с низким сопротивлением, тогда молекулы движутся от станции к автомобилю очень быстро»
Именно в этом и скрывается небольшая разница между автомобилями на топливных элементах и электрических батареях. Автомобили на батареях известны своей высокой производительностью: недавно Tesla S установила новый рекорд в разгоне с 0- 100. По зверениям Стефана Эллиса, менеджера водородных автомобилей Хонда в Америке, авто на топливных элементах могут быть наравне: «Установите такой же двигатель в Хонду и результат будет аналогичным»- говорит он.

Однако, все эти приемущества имеют, довольно, высокую цену. Автомобиль Honda Clarity стоит в два раза дороже, чем аналогичный автомобиль на батареях. К счастью, эта стоимость включает в себя еще и водород, который стоит 14 долларов за килограмм. С точки зрения энергии, это эквивалентно 5,6 долларов за галлон (примерно 0,67 долларов за литр). Со временем стоимость таких автомобилей должна снижаться.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

На данный момент невозможно заправиться где- нибудь вне Калифорнии. На данный момент в Калифорнии насчитывается 35 водородных заправочных станций. Большинство находиться в Лос- Анджелес.
Сейчас в Калифорнии строиться, примерно, одна водородная заправочная станция в месяц. К 2025 году планируется открыть 200 станций, однако это не идет ни в какое сравнение с количеством заправочных станций ископаемого топлива, примерно, 8500 и станций зарядок, примерно, 17000.

Источник

Справочная: как работают водородные автомобили и когда они появятся на дорогах

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?

Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?

Водород можно получать разными методами:

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля
Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?

Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.

Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?

Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?

Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Какие компании уже выпускают или собираются выпускать автомобили на водороде?

Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?

Чем водородные авто лучше электромобилей?

Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?

Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля
Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

Источник

Почему водородные автомобили проигрывают электромобилям?

О том, как еще далек от нас водородный автомобиль

Водород (H2) – это химический элемент, самый легкий газ получаемый из углеводородов, биомассы, мусора. Водород используют в нефтепереработке для гидроочистки, гидрокрекинга, для производства аммиака, при гидрогенизации угля, нефти и как альтернативный источник топлива (электроэнергии) для автомобилей. В автомобили ставят топливные элементы вместо бензобака, и заправляют туда H2 под давлением. При нажатии на педаль газа, в воздухозаборник поступает кислород, который вступает в реакцию с водородным элементом, отчего вырабатывается электричество. Электричество раскручивает электромотор, автомобиль начинает движение.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

H2 как альтернативное топливо

Чем интересен водород, как альтернативный источник топлива:

Преимущества водородных автомобилей над электромобилями:

Модели автомобилей на водородеГде брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Выпускают ограниченной серией:

Испытывают:

Ограниченными сериями выпускаются BMW Hydrogen 7 и Mazda RX-8 hydrogen – двухтопливные модели использующие либо жидкий водород, хранящийся в баке при температуре не выше −253 °C, либо бензин. Принцип тот же, что и в автомобилях на газу. В отличие от FCEV двухтопливные модели выпускают вредные выхлопные газы, двигатели не такие мощные и быстрее изнашиваются.
На водородных топливных элементах (FCEV) конструируют спецтехнику: автобусы, погрузочно-разгрузочное оборудование (например, вилочные погрузчики), наземно-вспомогательное оборудование, средние и большие грузовики. Активно в этой сфере работает американская компания Plug Power Inc (PLUG). PLUG выпускает комплектующие для спецтехники на водороде. Недавно PLUG провела симпозиум, на котором заявила:

Honda огласила цель по поэтапному отказу от бензиновых двигателей в Северной Америке к 2040 году.
Daimler Trucks и Volvo стали партнерами в Европе, чтобы попытаться снизить себестоимость FCEV и сделать водород выгодным для дальних перевозок.

Водород и проблемы с экологией

Водород обилен в природе. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения.
При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные выбросы. При этом, сам автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

Паровой риформинг метана

Способ отделения водорода путем парового метанового риформинга применим к ископаемому топливу, например, к природному газу – его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики США утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем в бензиновых автомобилях. Производство реформированного водорода уже запущено на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы – сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс называемый газификация, биомассу помещают под воздействие температуры, пара, кислорода, чтобы образовать газ, который после обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов – готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз – процесс отделение водорода из воды электрическим током. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область – 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).
Солнечные водородные станции Honda используют энергию солнца и электролиз, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

Планы компаний по развитию производства H2

В Токио, недалеко от Токийского залива, построили завод для получения водорода из сточных вод и мусора.
PowerTap планирует построить на водородных АЗС помещения с оборудованием для получения водорода из природного газа и городской воды. Оставшийся углерод будут улавливать, и хранить там же.
Ways2H Inc. огласила планы построить небольшие заводы по переработке водорода возле мусорных свалок. Формула успеха компании Ways2H Inc.: мусор + термохимический процесс = водород. Завод стандартного размера обрабатывает 24 тонны отходов в день, получая от 1 до 1,5 тонны водорода.

Сколько стоит производство водорода

На сколько экономней водородный автомобиль?

В Европе заправка полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 ₽ (717 ₽ за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 ₽ на 100 километров. Для сравнения, цена 95-го бензина в Европе равна 101 ₽, т.е. 10 л. бензина обойдется в 1010 ₽ или 6 060 ₽ за 600 километров [цены на 2018 год.] Из примера видим, что заправка водородного автомобиля в два раза дешевле, чем автомобиля с двигателем внутреннего сгорания.
В России активисты из г. Черноголовки Московской области, ради эксперимента сконструировали собственную водородную станцию, купили Toyota Mirai и посчитали, во сколько обойдется эксплуатация автомобиля. По расчетам владельца машины 100 километров на водороде ему обходится в 250 рублей.

Как заправляют топливные элементы водородом

В 1 килограмме газообразного водорода столько же энергии сколько в 1 галлоне бензина (4,5 литра = 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится в резервуарах высокого давления (топливных элементах) – 5000 или 10000 фунтов на квадратный дюйм (psi) (340 или 680 атмосфер), в виде сжатого газа. Водородные диспенсеры на заправках заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл-гидридом или низкотемпературными сорбционными материалами.

Как работает топливный элемент заполненный водородом

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Прокачивая кислород и водород через катоды и аноды, контактирующие с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что увеличивает напряжение.
Ниже смотрите схему работы топливного элемента.

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Где заправлять автомобили водородом?

Карта заправочных станций здесь.
Революция FCEV не начнется без достаточного количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как альтернативного вида топлива Развитие сетей водородных АЗС идет туго.
В Америке самый большой автопарк FCEV моделей, с концентрацией в штате Калифорния. Заправок там достаточно, но начались проблемы с поставкой водорода. Водители повально отказываются от водородных автомобилей, столкнувшись с пустыми заправками. Подробнее здесь.

Расходы на содержание водородных станций

Где брать водород для автомобиля. Смотреть фото Где брать водород для автомобиля. Смотреть картинку Где брать водород для автомобиля. Картинка про Где брать водород для автомобиля. Фото Где брать водород для автомобиля

Снижение стоимости водородных технологий за счет прогресса

Еще одно препятствие для производителей автомобилей на водородном топливе – цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Покупали когда-нибудь колечко из платины для любимой? Цена Вам известна.
Ученые из Лос-Аламосской национальной лаборатории доказали, что замена дорогой платины на более распространенные – железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины, заметно снизит себестоимость топливных элементов. Параллельно ученые пытаются снизить себестоимость производства аккумуляторов для электромобилей, подробней здесь.
На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы эффективней заправлять топливный элемент большим количеством H2. В связке с передовым литий-ионным аккумулятором как дополнительным хранилищем энергии, это увеличит количество энергии на борту автомобиля. «Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км.» считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 % за последние три года и на 80 % за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить еще в два раза. Нынешние водородные топливные элементы, «живут» около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно продлить их жизнь до 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, стоит отсутствие оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам. Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, поэтому и проблем с поставкой запчастей к ним нет. «Мы внедряем «водородную технологию» в люксовые автомобили и следим, как она себя показывают «в народе». Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

В 2005 году канадский производитель протон-обменных топливных элементов, обещал, что к 2010 году будет продавать автокомпаниям от 200 000 до 500 000 топливных элементов в год. Цель так и не была достигнута, топливные элементы в таком количестве заводам были не нужны.

В 2009 году несколько производителей автомобилей подписали совместное письмо о намерениях к 2014 году продавать сотни тысяч автомобилей с водородным двигателем. Этого тоже не произошло.

Получит ли «водородная программа» поддержку государства

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы не раз пыталась сократить финансирование программы развития водородных топливных элементов, но сокращения отменял конгресс.

Популярность электрических автомобилей сторонникам водорода кажется абсурдной. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель Honda. Аккумулятор, разработанный для Honda FCX, например, устанавливают и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии, возглавив список самых экономичных машин этого десятилетия».

Недовольны и те, кто платит из своего кармана за строительство новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородное топливо и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro. SunHydro строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Инвесторы в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

В России Правительство в 2020 году утвердило план по развитию водородной энергетики в Российской Федерации до 2024 года. В нем говорится:

ПОДВЕДЕМ ИТОГИ:

Минусы водородного топлива:

Плюсы водородного топлива:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *