How to compile c windows

How to compile c windows

Walkthrough: Compiling a Native C++ Program on the Command Line

In this walkthrough, you create a basic, «Hello, World»-style C++ program by using a text editor, and then compile it on the command line. If you’d like to try the Visual Studio IDE instead of using the command line, see Walkthrough: Working with Projects and Solutions (C++) or Using the Visual Studio IDE for C++ Desktop Development.

In this walkthrough, you can use your own C++ program instead of typing the one that’s shown. Or, you can use a C++ code sample from another help article.

Prerequisites

To complete this walkthrough, you must have installed either Visual Studio and the optional Desktop development with C++ workload, or the command-line Build Tools for Visual Studio.

Visual Studio is an integrated development environment (IDE). It supports a full-featured editor, resource managers, debuggers, and compilers for many languages and platforms. Versions available include the free Visual Studio Community edition, and all can support C and C++ development. For information on how to download and install Visual Studio, see Install C++ support in Visual Studio.

The Build Tools for Visual Studio installs only the command-line compilers, tools, and libraries you need to build C and C++ programs. It’s perfect for build labs or classroom exercises and installs relatively quickly. To install only the command-line tools, look for Build Tools for Visual Studio on the Visual Studio Downloads page.

Before you can build a C or C++ program on the command line, verify that the tools are installed, and you can access them from the command line. Visual C++ has complex requirements for the command-line environment to find the tools, headers, and libraries it uses. You can’t use Visual C++ in a plain command prompt window without doing some preparation. Fortunately, Visual C++ installs shortcuts for you to launch a developer command prompt that has the environment set up for command line builds. Unfortunately, the names of the developer command prompt shortcuts and where they’re located are different in almost every version of Visual C++ and on different versions of Windows. Your first walkthrough task is finding the right one to use.

A developer command prompt shortcut automatically sets the correct paths for the compiler and tools, and for any required headers and libraries. You must set these environment values yourself if you use a regular Command Prompt window. For more information, see Use the MSVC toolset from the command line. We recommend you use a developer command prompt shortcut instead of building your own.

Open a developer command prompt

If you have installed Visual Studio 2017 or later on Windows 10 or later, open the Start menu and choose All apps. Scroll down and open the Visual Studio folder (not the Visual Studio application). Choose Developer Command Prompt for VS to open the command prompt window.

If you have installed Microsoft Visual C++ Build Tools 2015 on Windows 10 or later, open the Start menu and choose All apps. Scroll down and open the Visual C++ Build Tools folder. Choose Visual C++ 2015 x86 Native Tools Command Prompt to open the command prompt window.

You can also use the Windows search function to search for «developer command prompt» and choose one that matches your installed version of Visual Studio. Use the shortcut to open the command prompt window.

Next, verify that the Visual C++ developer command prompt is set up correctly. In the command prompt window, enter cl and verify that the output looks something like this:

There may be differences in the current directory or version numbers. These values depend on the version of Visual C++ and any updates installed. If the above output is similar to what you see, then you’re ready to build C or C++ programs at the command line.

If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104 when you run the cl command, then either you are not using a developer command prompt, or something is wrong with your installation of Visual C++. You must fix this issue before you can continue.

Depending on the version of Windows on the computer and the system security configuration, you might have to right-click to open the shortcut menu for the developer command prompt shortcut and then choose Run as administrator to successfully build and run the program that you create by following this walkthrough.

Create a Visual C++ source file and compile it on the command line

In the developer command prompt window, enter md c:\hello to create a directory, and then enter cd c:\hello to change to that directory. This directory is where both your source file and the compiled program get created.

Enter notepad hello.cpp in the command prompt window.

Choose Yes when Notepad prompts you to create a new file. This step opens a blank Notepad window, ready for you to enter your code in a file named hello.cpp.

In Notepad, enter the following lines of code:

This code is a simple program that will write one line of text on the screen and then exit. To minimize errors, copy this code and paste it into Notepad.

Save your work! In Notepad, on the File menu, choose Save.

Congratulations, you’ve created a C++ source file, hello.cpp, that is ready to compile.

Switch back to the developer command prompt window. Enter dir at the command prompt to list the contents of the c:\hello directory. You should see the source file hello.cpp in the directory listing, which looks something like:

The dates and other details will differ on your computer.

At the developer command prompt, enter cl /EHsc hello.cpp to compile your program.

If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104, your developer command prompt is not set up correctly. For information on how to fix this issue, go back to the Open a developer command prompt section.

If you get a different compiler or linker error or warning, review your source code to correct any errors, then save it and run the compiler again. For information about specific errors, use the search box to look for the error number.

The program displays this text and exits:

Congratulations, you’ve compiled and run a C++ program by using the command-line tools.

Next steps

This «Hello, World» example is about as simple as a C++ program can get. Real world programs usually have header files, more source files, and link to libraries.

You can use the steps in this walkthrough to build your own C++ code instead of typing the sample code shown. These steps also let you build many C++ code sample programs that you find elsewhere. You can put your source code and build your apps in any writeable directory. By default, the Visual Studio IDE creates projects in your user folder, in a source\repos subfolder. Older versions may put projects in a Documents\Visual Studio \Projects folder.

To compile a program that has additional source code files, enter them all on the command line, like:

cl /EHsc file1.cpp file2.cpp file3.cpp

The /EHsc command-line option instructs the compiler to enable standard C++ exception handling behavior. Without it, thrown exceptions can result in undestroyed objects and resource leaks. For more information, see /EH (Exception Handling Model).

When you supply additional source files, the compiler uses the first input file to create the program name. In this case, it outputs a program called file1.exe. To change the name to program1.exe, add an /out linker option:

cl /EHsc file1.cpp file2.cpp file3.cpp /link /out:program1.exe

And to catch more programming mistakes automatically, we recommend you compile by using either the /W3 or /W4 warning level option:

cl /W4 /EHsc file1.cpp file2.cpp file3.cpp /link /out:program1.exe

The compiler, cl.exe, has many more options. You can apply them to build, optimize, debug, and analyze your code. For a quick list, enter cl /? at the developer command prompt. You can also compile and link separately and apply linker options in more complex build scenarios. For more information on compiler and linker options and usage, see C/C++ Building Reference.

You can use NMAKE and makefiles, MSBuild and project files, or CMake, to configure and build more complex projects on the command line. For more information on using these tools, see NMAKE Reference, MSBuild, and CMake projects in Visual Studio.

The C and C++ languages are similar, but not the same. The MSVC compiler uses a simple rule to determine which language to use when it compiles your code. By default, the MSVC compiler treats files that end in .c as C source code, and files that end in .cpp as C++ source code. To force the compiler to treat all files as C++ independent of file name extension, use the /TP compiler option.

The MSVC compiler includes a C Runtime Library (CRT) that conforms to the ISO C99 standard, with minor exceptions. Portable code generally compiles and runs as expected. Certain obsolete library functions, and several POSIX function names, are deprecated by the MSVC compiler. The functions are supported, but the preferred names have changed. For more information, see Security Features in the CRT and Compiler Warning (level 3) C4996.

Walkthrough: Compile a C program on the command line

The Visual Studio build tools include a C compiler that you can use to create everything from basic console programs to full Windows Desktop applications, mobile apps, and more. Microsoft C/C++ (MSVC) is a C and C++ compiler that, in its latest versions, conforms to some of the latest C language standards, including C11 and C17.

This walkthrough shows how to create a basic, «Hello, World»-style C program by using a text editor, and then compile it on the command line. If you’d rather work in C++ on the command line, see Walkthrough: Compiling a Native C++ Program on the Command Line. If you’d like to try the Visual Studio IDE instead of using the command line, see Walkthrough: Working with Projects and Solutions (C++) or Using the Visual Studio IDE for C++ Desktop Development.

Prerequisites

To complete this walkthrough, you must have installed either Visual Studio or the Build Tools for Visual Studio and the optional Desktop development with C++ workload.

Visual Studio is a powerful integrated development environment that supports a full-featured editor, resource managers, debuggers, and compilers for many languages and platforms. For information on these features and how to download and install Visual Studio, including the free Visual Studio Community edition, see Install Visual Studio.

The Build Tools for Visual Studio version of Visual Studio installs only the command-line toolset, the compilers, tools, and libraries you need to build C and C++ programs. It’s perfect for build labs or classroom exercises and installs relatively quickly. To install only the command-line toolset, download Build Tools for Visual Studio from the Visual Studio downloads page and run the installer. In the Visual Studio installer, select the Desktop development with C++ workload (in older versions of Visual Studio, select the C++ build tools workload), and choose Install.

When you’ve installed the tools, there’s another tool you’ll use to build a C or C++ program on the command line. MSVC has complex requirements for the command-line environment to find the tools, headers, and libraries it uses. You can’t use MSVC in a plain command prompt window without some preparation. You need a developer command prompt window, which is a regular command prompt window that has all the required environment variables set. Fortunately, Visual Studio installs shortcuts for you to launch developer command prompts that have the environment set up for command line builds. Unfortunately, the names of the developer command prompt shortcuts and where they’re located are different in almost every version of Visual Studio and on different versions of Windows. Your first walkthrough task is to find the right shortcut to use.

A developer command prompt shortcut automatically sets the correct paths for the compiler and tools, and for any required headers and libraries. Some of these values are different for each build configuration. You must set these environment values yourself if you don’t use one of the shortcuts. For more information, see Use the MSVC toolset from the command line. Because the build environment is complex, we strongly recommend you use a developer command prompt shortcut instead of building your own.

These instructions vary depending on which version of Visual Studio you’re using. To see the documentation for your preferred version of Visual Studio, use the Version selector control. It’s found at the top of the table of contents on this page.

Open a developer command prompt in Visual Studio 2022

If you’ve installed Visual Studio 2022 on Windows 10 or later, open the Start menu, and choose All apps. Then, scroll down and open the Visual Studio 2022 folder (not the Visual Studio 2022 app). Choose Developer Command Prompt for VS 2022 to open the command prompt window.

Open a developer command prompt in Visual Studio 2019

If you’ve installed Visual Studio 2019 on Windows 10 or later, open the Start menu, and choose All apps. Then, scroll down and open the Visual Studio 2019 folder (not the Visual Studio 2019 app). Choose Developer Command Prompt for VS 2019 to open the command prompt window.

Open a developer command prompt in Visual Studio 2017

If you’ve installed Visual Studio 2017 on Windows 10 or later, open the Start menu, and choose All apps. Then, scroll down and open the Visual Studio 2017 folder (not the Visual Studio 2017 app). Choose Developer Command Prompt for VS 2017 to open the command prompt window.

Open a developer command prompt in Visual Studio 2015

If you’ve installed Microsoft Visual C++ Build Tools 2015 on Windows 10 or later, open the Start menu, and choose All apps. Then, scroll down and open the Visual C++ Build Tools folder. Choose Visual C++ 2015 x86 Native Tools Command Prompt to open the command prompt window.

If you’re using a different version of Windows, look in your Start menu or Start page for a Visual Studio tools folder that contains a developer command prompt shortcut. You can also use the Windows search function to search for «developer command prompt» and choose one that matches your installed version of Visual Studio. Use the shortcut to open the command prompt window.

There may be differences in the current directory or version numbers, depending on the version of Visual Studio and any updates installed. If the above output is similar to what you see, then you’re ready to build C or C++ programs at the command line.

If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104 when you run the cl command, then either you are not using a developer command prompt, or something is wrong with your installation of Visual Studio. You must fix this issue before you can continue.

Depending on the version of Windows on the computer and the system security configuration, you might have to right-click to open the shortcut menu for the developer command prompt shortcut and then choose Run as Administrator to successfully build and run the program that you create by following this walkthrough.

Create a C source file and compile it on the command line

In the developer command prompt window, enter cd c:\ to change the current working directory to the root of your C: drive. Next, enter md c:\hello to create a directory, and then enter cd c:\hello to change to that directory. This directory will hold your source file and the compiled program.

Enter notepad hello.c at the developer command prompt. In the Notepad alert dialog that pops up, choose Yes to create a new hello.c file in your working directory.

In Notepad, enter the following lines of code:

On the Notepad menu bar, choose File > Save to save hello.c in your working directory.

Switch back to the developer command prompt window. Enter dir at the command prompt to list the contents of the c:\hello directory. You should see the source file hello.c in the directory listing, which looks something like:

To compile your program, enter cl hello.c at the developer command prompt.

You can see the executable program name, hello.exe, in the lines of output information that the compiler displays:

If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104, your developer command prompt is not set up correctly. For information on how to fix this issue, go back to the Open a developer command prompt section.

If you get a different compiler or linker error or warning, review your source code to correct any errors, then save it and run the compiler again. For information about specific errors, use the search box at the top of this page to look for the error number.

To run your program, enter hello at the command prompt.

The program displays this text and then exits:

Congratulations, you’ve compiled and run a C program by using the command line.

Next steps

This «Hello, World» example is about as basic as a C program can get. Real world programs have header files and more source files, link in libraries, and do useful work.

You can use the steps in this walkthrough to build your own C code instead of typing the sample code shown. You can also build many C code sample programs that you find elsewhere. To compile a program that has more source code files, enter them all on the command line:

cl file1.c file2.c file3.c

cl file1.c file2.c file3.c /link /out:program1.exe

And to catch more programming mistakes automatically, we recommend you compile by using either the /W3 or /W4 warning level option:

cl /W4 file1.c file2.c file3.c /link /out:program1.exe

The compiler, cl.exe, has many more options you can apply to build, optimize, debug, and analyze your code. For a quick list, enter cl /? at the developer command prompt. You can also compile and link separately and apply linker options in more complex build scenarios. For more information on compiler and linker options and usage, see C/C++ Building Reference.

You can use NMAKE and makefiles, or MSBuild and project files to configure and build more complex projects on the command line. For more information on using these tools, see NMAKE Reference and MSBuild.

The C and C++ languages are similar, but not the same. The Microsoft C/C++ compiler (MSVC) uses a basic rule to determine which language to use when it compiles your code. By default, the MSVC compiler treats all files that end in .c as C source code, and all files that end in .cpp as C++ source code. To force the compiler to treat all files as C no matter the file name extension, use the /TC compiler option.

Certain library functions and POSIX function names are deprecated by MSVC. The functions are supported, but the preferred names have changed. For more information, see Security Features in the CRT and Compiler Warning (level 3) C4996.

How to compile and run C program using command line in Windows

Quick links

This is one of the most frequently asked question to me. Creating and compiling a C program using an IDE is like waving some magic wand. However, a beginner must know how to compile and run C programs using command line in Windows based operating system.

To create a C program using command line you need two basic software’s.

You must have C compiler installed and configured on your computer before you proceed.

How to create a C program using Notepad (Windows)?

Copy and paste the below source in your notepad.

How to compile c windows. Смотреть фото How to compile c windows. Смотреть картинку How to compile c windows. Картинка про How to compile c windows. Фото How to compile c windows

How to compile and run a C program using command line?

Once you created your first C program. It’s time for real action. A program is worthless until it is compiled and executed.

Syntax to compile single C program using GCC

Syntax to compile multiple files at once using GCC

Syntax to run a C program

Example to compile and run above program

Before you compile and run the above C program. You must be in the same directory as of your C program. To test your program open command prompt and execute following commands.

About Pankaj

Pankaj Prakash is the founder, editor and blogger at Codeforwin. He loves to learn new techs and write programming articles especially for beginners. He works at Vasudhaika Software Sols. as a Software Design Engineer and manages Codeforwin. In short Pankaj is Web developer, Blogger, Learner, Tech and Music lover.

How to compile a C program?

I haven’t done C in a long time. I’d like to compile this program, but I have no idea how to proceed. It seems like the makefile refers to GCC a lot and I’ve never used GCC.

I just want an executable that will run on windows.

7 Answers 7

Trending sort

Trending sort is based off of the default sorting method — by highest score — but it boosts votes that have happened recently, helping to surface more up-to-date answers.

It falls back to sorting by highest score if no posts are trending.

Switch to Trending sort

You may need to install either cygwin or mingw, which are UNIX-like environments for Windows.

When downloading/installing either cygwin or mingw, you will have the option of downloading and installing some optional features; you will need the following:

How to compile c windows. Смотреть фото How to compile c windows. Смотреть картинку How to compile c windows. Картинка про How to compile c windows. Фото How to compile c windows

If it requires gcc and you want it to run on Windows, you could download Cygwin.

That’s basically an emulator for GNU/Linux type stuff for Windows. It works with an emulation DLL.

In order to compile this program you need a C compiler. It does not have to be gcc, although you are already given a makefile set up to use gcc. The simplest thing for you to do would be the following:

If you are not comfortable with using command line tools then you can download the free version of MS Visual Studio and import the source files into a new Visual Studio project. This way you would not need to install cygwin and use gcc, but you would need to know how to create projects and run programs in Visual Studio.

You almost certainly don’t need all of cygwin to compile using gcc. There are plenty of standalone gcc clones for Windows, like gcw.

If it’s reasonably portable C code (I haven’t looked at it), then you may be able to just ignore the included Makefile and feed the source into whatever compiler you do want to use. What happens when you try that?

Dev-C++ provides a simple but nice IDE which uses the Mingw gcc compiler and provides Makefile support. Here are the steps I used to build the above code using Dev-C++ (i.e. this is a «how-to»)

After downloading the source zip from NIST, I

Then under Project Options

and then hit OK to close the dialog. Go to Execute > Compile and let it whirl. A minute later, you can find the executable in the sts-2.0\obj directory.

Use the Microsoft C++ toolset from the command line

You can build C and C++ applications on the command line by using tools that are included in Visual Studio. The Microsoft C++ (MSVC) compiler toolset is also downloadable as a standalone package. You don’t need to install the Visual Studio IDE if you don’t plan to use it.

Download and install the tools

If you’ve installed Visual Studio and a C++ workload, you have all the command-line tools. For information on how to install C++ and Visual Studio, see Install C++ support in Visual Studio. If you only want the command-line toolset, download the Build Tools for Visual Studio. When you run the downloaded executable, it updates and runs the Visual Studio Installer. To install only the tools you need for C++ development, select the Desktop development with C++ workload. You can select optional libraries and toolsets to include under Installation details. To build code by using the Visual Studio 2015, 2017, or 2019 toolsets, select the optional MSVC v140, v141, or v142 build tools. When you’re satisfied with your selections, choose Install.

If you’ve installed Visual Studio and a C++ workload, you have all the command-line tools. For information on how to install C++ and Visual Studio, see Install C++ support in Visual Studio. If you only want the command-line toolset, download the Build Tools for Visual Studio 2017. When you run the downloaded executable, it updates and runs the Visual Studio Installer. To install only the tools you need for C++ development, select the Visual C++ build tools workload. You can select optional libraries and toolsets to include under Installation details. To build code by using the Visual Studio 2015 toolset, select the optional MSVC v140 build tools. When you’re satisfied with your selections, choose Install.

How to use the command-line tools

When you choose one of the C++ workloads in the Visual Studio Installer, it installs the Visual Studio platform toolset. A platform toolset has all the C and C++ tools for a specific Visual Studio version. The tools include the C/C++ compilers, linkers, assemblers, and other build tools, and matching libraries and header files. You can use all of these tools at the command line. They’re also used internally by the Visual Studio IDE. There are separate x86-hosted and x64-hosted compilers and tools to build code for x86, x64, ARM, and ARM64 targets. Each set of tools for a particular host and target build architecture is stored in its own directory.

To work correctly, the tools require several specific environment variables to be set. These variables are used to add the tools to the path, and to set the locations of include files, library files, and SDKs. To make it easy to set these environment variables, the installer creates customized command files, or batch files, during installation. You can run one of these command files to set a specific host and target build architecture, Windows SDK version, and platform toolset. For convenience, the installer also creates shortcuts in your Start menu. The shortcuts open developer command prompt windows by using these command files for specific combinations of host and target. These shortcuts ensure all the required environment variables are set and ready to use.

The required environment variables are specific to your installation and to the build architecture you choose. They also might be changed by product updates or upgrades. This variability is one reason why we recommend you use an installed command prompt shortcut or command file, instead of setting the environment variables yourself.

The toolsets, command files, and shortcuts installed depend on your computer processor and the options you selected during installation. The x86-hosted tools and cross tools that build x86 and x64 code are always installed. If you have 64-bit Windows, the x64-hosted tools and cross tools that build x86 and x64 code are also installed. If you choose the optional C++ Universal Windows Platform tools, then the x86 and x64 tools that build ARM and ARM64 code also get installed. Other workloads may install these and other tools.

Path and environment variables for command-line builds

To see which environment variables are set by a developer command prompt shortcut, you can use the SET command. Open a plain command prompt window and capture the output of the SET command for a baseline. Open a developer command prompt window and capture the output of the SET command for comparison. Use a diff tool such as the one built into Visual Studio to highlight the environment variables set by the developer command prompt. For more information about the compiler and linker environment variables, see CL environment variables.

Developer command prompt shortcuts

The command prompt shortcuts are installed in a version-specific Visual Studio folder in your Windows Start menu. Here’s a list of the base command prompt shortcuts and the build architectures they support:

The Start menu folder and shortcut names vary depending on the installed version of Visual Studio. If you set one, they also depend on the installation Nickname. For example, suppose you installed Visual Studio 2022, and you gave it a nickname of Latest. The developer command prompt shortcut is named Developer Command Prompt for VS 2022 (Latest), in a folder named Visual Studio 2022.

The Start menu folder and shortcut names vary depending on the installed version of Visual Studio. If you set one, they also depend on the installation Nickname. For example, suppose you installed Visual Studio 2017, and you gave it a nickname of Latest. The developer command prompt shortcut is named Developer Command Prompt for VS 2017 (Latest), in a folder named Visual Studio 2017.

The Start menu folder and shortcut names vary depending on the installed version of Visual Studio. For example, suppose you installed Visual Studio 2015. The developer command prompt shortcut is named Developer Command Prompt for VS 2015.

Several command-line tools or tool options may require Administrator permission. If you have permission issues when you use them, we recommend that you open the developer command prompt window by using the Run as Administrator option. Right-click to open the shortcut menu for the command prompt window, then choose More, Run as administrator.

To open a developer command prompt window

On the desktop, open the Windows Start menu. In Windows 11, choose the All apps button to open the list of installed apps. In Windows 10, the list is open to the left. Scroll down the list to find and open the folder (not the app) for your version of Visual Studio, for example, Visual Studio 2022.

In the folder, choose the Developer Command Prompt for your version of Visual Studio. This shortcut starts a developer command prompt window that uses the default build architecture of 32-bit, x86-native tools to build 32-bit, x86-native code. If you prefer a non-default build architecture, choose one of the native or cross tools command prompts to specify the host and target architecture.

For an even faster way to open a developer command prompt, enter developer command prompt in the desktop search box. Then choose the result you want.

Developer command file locations

If you prefer to set the build environment in an existing command prompt window, you can use one of the command files created by the installer. We recommend you set the environment in a new command prompt window. We don’t recommend you later switch environments in the same command window.

More command files are available to set up specific build architectures. The command files available depend on the Visual Studio workloads and options you’ve installed. In Visual Studio 2017 and Visual Studio 2019, you’ll find them in the VC\Auxiliary\Build subdirectory.

More command files are available to set up specific build architectures. The command files available depend on the Visual Studio workloads and options you’ve installed. In Visual Studio 2015, they’re located in the VC, VC\bin, or VC\bin\architecture subdirectories, where architecture is one of the native or cross-compiler options.

These command files set default parameters and call VsDevCmd.bat to set up the specified build architecture environment. A typical installation may include these command files:

Command FileHost and Target architectures
vcvars32.batUse the 32-bit x86-native tools to build 32-bit x86 code.
vcvars64.batUse the 64-bit x64-native tools to build 64-bit x64 code.
vcvarsx86_amd64.batUse the 32-bit x86-native cross tools to build 64-bit x64 code.
vcvarsamd64_x86.batUse the 64-bit x64-native cross tools to build 32-bit x86 code.
vcvarsx86_arm.batUse the 32-bit x86-native cross tools to build ARM code.
vcvarsamd64_arm.batUse the 64-bit x64-native cross tools to build ARM code.
vcvarsx86_arm64.batUse the 32-bit x86-native cross tools to build ARM64 code.
vcvarsamd64_arm64.batUse the 64-bit x64-native cross tools to build ARM64 code.
vcvarsall.batUse parameters to specify the host and target architectures, Windows SDK, and platform choices. For a list of supported options, call by using a /help parameter.

The vcvarsall.bat file and other Visual Studio command files can vary from computer to computer. Do not replace a missing or damaged vcvarsall.bat file by using a file from another computer. Rerun the Visual Studio installer to replace the missing file.

The vcvarsall.bat file also varies from version to version. If the current version of Visual Studio is installed on a computer that also has an earlier version of Visual Studio, do not run vcvarsall.bat or another Visual Studio command file from different versions in the same command prompt window.

Use the developer tools in an existing command window

The simplest way to specify a particular build architecture in an existing command window is to use the vcvarsall.bat file. Use vcvarsall.bat to set environment variables to configure the command line for native 32-bit or 64-bit compilation. Arguments let you specify cross-compilation to x86, x64, ARM, or ARM64 processors. You can target Microsoft Store, Universal Windows Platform, or Windows Desktop platforms. You can even specify which Windows SDK to use, and select the platform toolset version.

When used with no arguments, vcvarsall.bat configures the environment variables to use the current x86-native compiler for 32-bit Windows Desktop targets. You can add arguments to configure the environment to use any of the native or cross compiler tools. vcvarsall.bat displays an error message if you specify a configuration that’s not installed, or not available on your computer.

vcvarsall syntax

vcvarsall.bat [ architecture ] [ platform_type ] [ winsdk_version ] [ -vcvars_ver= vcversion ] [ spectre_mode ]

architecture
This optional argument specifies the host and target architecture to use. If architecture isn’t specified, the default build environment is used. These arguments are supported:

architectureCompilerHost computer architectureBuild output (target) architecture
x86x86 32-bit nativex86, x64x86
x86_amd64 or x86_x64x64 on x86 crossx86, x64x64
x86_armARM on x86 crossx86, x64ARM
x86_arm64ARM64 on x86 crossx86, x64ARM64
amd64 or x64x64 64-bit nativex64x64
amd64_x86 or x64_x86x86 on x64 crossx64x86
amd64_arm or x64_armARM on x64 crossx64ARM
amd64_arm64 or x64_arm64ARM64 on x64 crossx64ARM64

platform_type
This optional argument allows you to specify store or uwp as the platform type. By default, the environment is set to build desktop or console apps.

vcversion
Optionally specifies the Visual Studio compiler toolset to use. By default, the environment is set to use the current Visual Studio compiler toolset.

Use -vcvars_ver=14.2x.yyyyy to specify a specific version of the Visual Studio 2019 compiler toolset.

Use -vcvars_ver=14.29 to specify the latest version of the Visual Studio 2019 compiler toolset.

Use -vcvars_ver=14.16 to specify the latest version of the Visual Studio 2017 compiler toolset.

Use -vcvars_ver=14.1x.yyyyy to specify a specific version of the Visual Studio 2017 compiler toolset.

Use -vcvars_ver=14.0 to specify the Visual Studio 2015 compiler toolset.

spectre_mode
Leave this parameter out to use libraries without Spectre mitigations. Use the value spectre to use libraries with Spectre mitigations.

To set up the build environment in an existing command prompt window

At the command prompt, use the CD command to change to the Visual Studio installation directory. Then, use CD again to change to the subdirectory that contains the configuration-specific command files. For Visual Studio 2019 and Visual Studio 2017, use the VC\Auxiliary\Build subdirectory. For Visual Studio 2015, use the VC subdirectory.

Enter the command for your preferred developer environment. For example, to build ARM code for UWP on a 64-bit platform, using the latest Windows SDK and Visual Studio compiler toolset, use this command line:

vcvarsall.bat amd64_arm uwp

Create your own command prompt shortcut

Open the Properties dialog for a developer command prompt shortcut to see the command target used. For example, the target for the x64 Native Tools Command Prompt for VS 2019 shortcut is something similar to:

%comspec% /k «C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat»

Open the Properties dialog for a developer command prompt shortcut to see the command target used. For example, the target for the x64 Native Tools Command Prompt for VS 2017 shortcut is something similar to:

%comspec% /k «C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat»

Open the Properties dialog for a developer command prompt shortcut to see the command target used. For example, the target for the VS2015 x64 Native Tools Command Prompt shortcut is something similar to:

%comspec% /k «C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat» amd64

Adjust the path to reflect your Visual Studio installation directory. The vcvarsall.bat file has additional information about specific version numbers.

Command-line tools

To build a C/C++ project at a command prompt, Visual Studio provides these command-line tools:

CL
Use the compiler (cl.exe) to compile and link source code files into apps, libraries, and DLLs.

Link
Use the linker (link.exe) to link compiled object files and libraries into apps and DLLs.

When you build on the command line, the F1 command isn’t available for instant help. Instead, you can use a search engine to get information about warnings, errors, and messages. You can also download and use the offline help files. To use the search in docs.microsoft.com, enter your query in the search box at the top of any article.

Command-line project management tools

By default, the Visual Studio IDE uses native project build systems based on MSBuild. You can invoke MSBuild directly to build projects without using the IDE. You can also use the devenv command to use Visual Studio to build projects and solutions. Visual Studio also supports build systems based on CMake or NMake.

MSBuild
Use MSBuild (msbuild.exe) and a project file (.vcxproj) to configure a build and invoke the toolset without loading the Visual Studio IDE. It’s equivalent to running the Build project or Build Solution command in the Visual Studio IDE. MSBuild has advantages over the IDE when you build at the command line. You don’t have to install the full IDE on all your build servers and build pipelines. You avoid the extra overhead of the IDE. MSBuild runs in containerized build environments, and supports a binary logger.

DEVENV
Use DEVENV (devenv.exe) combined with a command-line switch such as /Build or /Clean to execute certain build commands without displaying the Visual Studio IDE.

CMake
CMake (cmake.exe) is a cross-platform, open-source tool for defining build processes that run on multiple platforms. CMake can configure and control native build tools for its supported platforms, such as MSBuild and Make. For more information about CMake, see the CMake documentation.

NMAKE
Use NMAKE (nmake.exe) to build C++ projects by using a traditional makefile.

Starting in Visual Studio 2019 version 16.5, MSBuild and DEVENV don’t use the command-line environment to control the toolset and libraries used.

In this section

These articles show how to build apps on the command line, and describe how to customize the command-line build environment. Some show how to use 64-bit toolsets, and target x86, x64, ARM, and ARM64 platforms. They also describe use of the command-line build tools MSBuild and NMAKE.

Walkthrough: Compiling a native C++ program on the command line
Gives an example that shows how to create and compile a C++ program on the command line.

Walkthrough: Compile a C program on the command line
Describes how to compile a program written in the C programming language.

Walkthrough: Compiling a C++/CX program on the command line
Describes how to create and compile a C++/CX program that uses the Windows Runtime.

NMAKE reference
Provides links to articles that describe the Microsoft Program Maintenance Utility (NMAKE.EXE).

Related sections

/MD, /MT, /LD (Use run-time library)
Describes how to use these compiler options to use a Debug or Release run-time library.

C/C++ compiler options
Provides links to articles that discuss the C and C++ compiler options and CL.exe.

MSVC linker options
Provides links to articles that discuss the linker options and LINK.exe.

Additional MSVC build tools
Provides links to the C/C++ build tools that are included in Visual Studio.

Источники информации:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *