How to learn github yandex
How to learn github yandex
wrongsky1/how-to-learn
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
Научиться учиться. Лендинг для Яндекс.Практикума
Проект представляет собой одностраничный сайт.
Планы по доработке
How to learn. The second project for Yandex.Praktikum
The single page website is created using some advanced features of HTML and CSS.
About
Научиться учиться. Лендинг для Яндекс.Практикума (How to learn)
Topics
Resources
Stars
Watchers
Forks
Releases
Packages 0
Languages
Footer
© 2022 GitHub, Inc.
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.
SergeyDedikov/how-to-learn
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
Проектная работа №2
Учебный курс «Веб-разработчик» от Яндекс.Практикума
Данная проектная работа является продолжением первой,
в которой начато изучение принципов html и css.
Помимо уже изученных БЭМ-методологии в html, флекс-вёрстки,
позиционирования, форматирования текста
в новой работе были применены следующие техники:
Всё это помогает разнообразить и украсить веб-проект
при сохранении удобства дальнейшего расширения.
🔣 Попробовать другие шрифты
😺 Добавить котиков
✔️ 💯 Дописать все вендорные префиксы для кроссбраузерности
🏁 Сделать форму для связи со мной
yandex/rep
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
Reproducible Experiment Platform (REP)
REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way.
REP is not trying to substitute scikit-learn, but extends it and provides better user experience.
To get started, look at the notebooks in /howto/
Notebooks can be viewed (not executed) online at nbviewer
There are basic introductory notebooks (about python, IPython) and more advanced ones (about the REP itself)
Examples code is written in python 2, but library is python 2 and python 3 compatible.
Installation with Docker
We provide the docker image with REP and all it’s dependencies. It is a recommended way, specially if you’re not experienced in python.
Installation with bare hands
However, if you want to install REP and all of its dependencies on your machine yourself, follow this manual: installing manually and running manually.
Apache 2.0, library is open-source.
REP wrappers are sklearn compatible:
Beloved trick of kagglers is to run bagging over complex algorithms. This is how it is done in REP:
Another useful trick is to use folding instead of splitting data into train/test. This is specially useful when you’re using some kind of complex stacking
In example above all data are splitted into 3 folds, and each fold is predicted by classifier which was trained on other 2 folds.
Also REP classifiers provide report:
You can read about other REP tools (like smart distributed grid search, folding and factory) in documentation and howto examples.
demin-v/Yandex_Praktikum
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
В этом репозитории собраны мои проекты из курса «Специалист по Data Science» Яндекс.Практикума
This repository contains my projects from the «Data Science Specialist» training program by Yandex.Praktikum
Заказчик — кредитный отдел банка. Нужно разобраться, влияет ли семейное положение и количество детей клиента на факт погашения кредита в срок. Входные данные от банка — статистика о платёжеспособности клиентов. Результаты исследования будут учтены при построении модели кредитного скоринга — специальной системы, которая оценивает способность потенциального заёмщика вернуть кредит банку.
Исследовательский анализ данных
В вашем распоряжении данные сервиса Яндекс.Недвижимость — архив объявлений о продаже квартир в Санкт-Петербурге и соседних населённых пунктов за несколько лет. Нужно научиться определять рыночную стоимость объектов недвижимости. Ваша задача — установить параметры. Это позволит построить автоматизированную систему: она отследит аномалии и мошенническую деятельность.
Exploratory data analysis
At your disposal is the data of the service Yandex. Apartments for sale in Saint-Petersburg and neighboring settlements for several years. You need to learn how to determine the market value of real estate. Your task is to set the parameters. This will build an automated system: it will track anomalies and fraudulent activity.
Статистический анализ данных
Вы аналитик компании «Мегалайн» — федерального оператора сотовой связи. Клиентам предлагают два тарифных плана: «Смарт» и «Ультра». Чтобы скорректировать рекламный бюджет, коммерческий департамент хочет понять, какой тариф приносит больше денег.
Statistical analysis of data
You are an analyst of Megaline, a federal mobile operator. The clients are offered two tariff plans: «Smart» and «Ultra». To adjust the advertising budget, the commercial department wants to understand which tariff brings more money.
Вы работаете в интернет-магазине «Стримчик», который продаёт по всему миру компьютерные игры. Из открытых источников доступны исторические данные о продажах игр, оценки пользователей и экспертов, жанры и платформы (например, Xbox или PlayStation). Вам нужно выявить определяющие успешность игры закономерности. Это позволит сделать ставку на потенциально популярный продукт и спланировать рекламные кампании.
You work in the online store » Streamchik «, which sells around the world computer games. Historical data on game sales, user and expert evaluations, genres and platforms (e.g. Xbox or PlayStation) are available from open sources. You need to identify patterns that determine the success of the game. This will allow you to bet on a potentially popular product and plan advertising campaigns.
Введение в машинное обучение
Оператор мобильной связи «Мегалайн» выяснил: многие клиенты пользуются архивными тарифами. Они хотят построить систему, способную проанализировать поведение клиентов и предложить пользователям новый тариф: «Смарт» или «Ультра».
Introduction to machine learning
Mobile operator «Megaline» found out: many customers use archive tariffs. They want to build a system that can analyze customer behavior and offer users a new tariff: «Smart» or «Ultra».
Обучение с учителем
Из «Бета-Банка» стали уходить клиенты. Каждый месяц. Немного, но заметно. Банковские маркетологи посчитали: сохранять текущих клиентов дешевле, чем привлекать новых. Нужно спрогнозировать, уйдёт клиент из банка в ближайшее время или нет. Вам предоставлены исторические данные о поведении клиентов и расторжении договоров с банком.
«Beta-Bank» started leaving clients. Every month. A little, but noticeable. Banking marketers thought: it is cheaper to save current customers than to attract new ones. It is necessary to predict whether the client will leave the bank in the near future or not. You are provided with historical data on the behavior of clients and the termination of contracts with the bank.
Машинное обучение в бизнесе
Допустим, вы работаете в добывающей компании «ГлавРосГосНефть». Нужно решить, где бурить новую скважину. Вам предоставлены пробы нефти в трёх регионах: в каждом — 100 000 месторождений, где измерили качество нефти и объём её запасов. Постройте модель машинного обучения, которая поможет определить регион, где добыча принесёт наибольшую прибыль.
Machine learning in business
Suppose you work at GlavRosGosNeft production company. We need to decide where to drill the new well. You have been given samples of oil in three regions: in each region there are 100,000 oil fields where the quality of oil and the volume of its reserves were measured. Build a model of machine training that will help you determine the region where production will bring the most profit.
Подготовьте прототип модели машинного обучения для «Цифры». Компания разрабатывает решения для эффективной работы промышленных предприятий. Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды. В вашем распоряжении данные с параметрами добычи и очистки. Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками
Prepare a prototype machine learning model for «Numbers». The company develops solutions for efficient operation of industrial enterprises. The model must predict the recovery rate of gold from gold ore. Data with mining and cleaning parameters are at your disposal. The model will help to optimize production so as not to run a plant with loss-making characteristics.
Вам нужно защитить данные клиентов страховой компании «Хоть потоп». Разработайте такой метод преобразования данных, чтобы по ним было сложно восстановить персональную информацию.
You need to protect your customer data from «We’re not afraid of the flood» insurance company. Develop a method to convert data so that it is difficult to recover personal information.
Сервис по продаже автомобилей с пробегом «Не бит, не крашен» разрабатывает приложение для привлечения новых клиентов. В нём можно быстро узнать рыночную стоимость своего автомобиля. В вашем распоряжении исторические данные: технические характеристики, комплектации и цены автомобилей. Вам нужно построить модель для определения стоимости.
Car sales service with mileage «Not broken, not painted» develops an application to attract new customers. In it you can quickly find out the market value of your car. Historical data: technical specifications, equipment and prices of cars are at your disposal. You need to build a model to determine the price.
Компания «Чётенькое такси» собрала исторические данные о заказах такси в аэропортах. Чтобы привлекать больше водителей в период пиковой нагрузки, нужно спрогнозировать количество заказов такси на следующий час. Постройте модель для такого предсказания.
«Cool Taxi» Company has collected historical data on taxi orders at airports. To attract more drivers during the peak load, you need to predict the number of taxi orders for the next hour. Build a model for such a prediction.
Машинное обучение для текстов
Интернет-магазин «Викишоп» запускает новый сервис. Теперь пользователи могут редактировать и дополнять описания товаров, как в вики-сообществах. То есть клиенты предлагают свои правки и комментируют изменения других. Магазину нужен инструмент, который будет искать токсичные комментарии и отправлять их на модерацию.
Обучите модель классифицировать комментарии на позитивные и негативные. В вашем распоряжении набор данных с разметкой о токсичности правок.
Machine learning for texts
Online store «Wikishop» launches a new service. Now users can edit and supplement product descriptions, as on wikis. That is, customers offer their edits and comment on changes made by others. The store needs a tool that will search for toxic comments and send them to moderation.
Teach the model to categorize comments into positive and negative. At your disposal is a data set with markings on the toxicity of edits.
Вы аналитик российской авиакомпании F9, выполняющей внутренние пассажирские перевозки. Важно понять предпочтения пользователей, покупающих билеты на разные направления. Вам предстоит изучить базу данных и проанализировать спрос пассажиров на рейсы в города, где проходят крупнейшие культурные фестивали.
You are an analyst of the Russian airline F9, which performs domestic passenger transportation. It is important to understand the preferences of users who buy tickets to different destinations. You will have to study the database and analyze passenger demand for flights to cities where major cultural festivals are held.
Сетевой супермаркет «Хлеб-Соль» внедряет систему компьютерного зрения для обработки фотографий покупателей. Фотофиксация в прикассовой зоне поможет определять возраст клиентов, чтобы:
Network supermarket «Bread and salt» introduces a computer vision system for processing photos of customers. Photofixing in the checkout area will help determine the age of customers to:
Чтобы оптимизировать производственные расходы, металлургический комбинат ООО «Так закаляем сталь» решил уменьшить потребление электроэнергии на этапе обработки стали. Вам предстоит построить модель, которая предскажет температуру стали.
In order to optimize production costs, «That’s how we temper steel» metallurgical plant decided to reduce electricity consumption at the steel processing stage. You have to build a model that predicts the temperature of steel.
acreate-acreate/Yandex_Praktikum
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
В этом репозитории собраны мои проекты из курса «Специалист по Data Science» Яндекс.Практикума
This repository contains my projects from the «Data Science Specialist» training program by Yandex.Praktikum
Заказчик — кредитный отдел банка. Нужно разобраться, влияет ли семейное положение и количество детей клиента на факт погашения кредита в срок. Входные данные от банка — статистика о платёжеспособности клиентов. Результаты исследования будут учтены при построении модели кредитного скоринга — специальной системы, которая оценивает способность потенциального заёмщика вернуть кредит банку.
Исследовательский анализ данных
В вашем распоряжении данные сервиса Яндекс.Недвижимость — архив объявлений о продаже квартир в Санкт-Петербурге и соседних населённых пунктов за несколько лет. Нужно научиться определять рыночную стоимость объектов недвижимости. Ваша задача — установить параметры. Это позволит построить автоматизированную систему: она отследит аномалии и мошенническую деятельность.
Exploratory data analysis
At your disposal is the data of the service Yandex. Apartments for sale in Saint-Petersburg and neighboring settlements for several years. You need to learn how to determine the market value of real estate. Your task is to set the parameters. This will build an automated system: it will track anomalies and fraudulent activity.
Статистический анализ данных
Вы аналитик компании «Мегалайн» — федерального оператора сотовой связи. Клиентам предлагают два тарифных плана: «Смарт» и «Ультра». Чтобы скорректировать рекламный бюджет, коммерческий департамент хочет понять, какой тариф приносит больше денег.
Statistical analysis of data
You are an analyst of Megaline, a federal mobile operator. The clients are offered two tariff plans: «Smart» and «Ultra». To adjust the advertising budget, the commercial department wants to understand which tariff brings more money.
Вы работаете в интернет-магазине «Стримчик», который продаёт по всему миру компьютерные игры. Из открытых источников доступны исторические данные о продажах игр, оценки пользователей и экспертов, жанры и платформы (например, Xbox или PlayStation). Вам нужно выявить определяющие успешность игры закономерности. Это позволит сделать ставку на потенциально популярный продукт и спланировать рекламные кампании.
You work in the online store » Streamchik «, which sells around the world computer games. Historical data on game sales, user and expert evaluations, genres and platforms (e.g. Xbox or PlayStation) are available from open sources. You need to identify patterns that determine the success of the game. This will allow you to bet on a potentially popular product and plan advertising campaigns.
Введение в машинное обучение
Оператор мобильной связи «Мегалайн» выяснил: многие клиенты пользуются архивными тарифами. Они хотят построить систему, способную проанализировать поведение клиентов и предложить пользователям новый тариф: «Смарт» или «Ультра».
Introduction to machine learning
Mobile operator «Megaline» found out: many customers use archive tariffs. They want to build a system that can analyze customer behavior and offer users a new tariff: «Smart» or «Ultra».
Обучение с учителем
Из «Бета-Банка» стали уходить клиенты. Каждый месяц. Немного, но заметно. Банковские маркетологи посчитали: сохранять текущих клиентов дешевле, чем привлекать новых. Нужно спрогнозировать, уйдёт клиент из банка в ближайшее время или нет. Вам предоставлены исторические данные о поведении клиентов и расторжении договоров с банком.
«Beta-Bank» started leaving clients. Every month. A little, but noticeable. Banking marketers thought: it is cheaper to save current customers than to attract new ones. It is necessary to predict whether the client will leave the bank in the near future or not. You are provided with historical data on the behavior of clients and the termination of contracts with the bank.
Машинное обучение в бизнесе
Допустим, вы работаете в добывающей компании «ГлавРосГосНефть». Нужно решить, где бурить новую скважину. Вам предоставлены пробы нефти в трёх регионах: в каждом — 100 000 месторождений, где измерили качество нефти и объём её запасов. Постройте модель машинного обучения, которая поможет определить регион, где добыча принесёт наибольшую прибыль.
Machine learning in business
Suppose you work at GlavRosGosNeft production company. We need to decide where to drill the new well. You have been given samples of oil in three regions: in each region there are 100,000 oil fields where the quality of oil and the volume of its reserves were measured. Build a model of machine training that will help you determine the region where production will bring the most profit.
Подготовьте прототип модели машинного обучения для «Цифры». Компания разрабатывает решения для эффективной работы промышленных предприятий. Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды. В вашем распоряжении данные с параметрами добычи и очистки. Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками
Prepare a prototype machine learning model for «Numbers». The company develops solutions for efficient operation of industrial enterprises. The model must predict the recovery rate of gold from gold ore. Data with mining and cleaning parameters are at your disposal. The model will help to optimize production so as not to run a plant with loss-making characteristics.
Вам нужно защитить данные клиентов страховой компании «Хоть потоп». Разработайте такой метод преобразования данных, чтобы по ним было сложно восстановить персональную информацию.
You need to protect your customer data from «We’re not afraid of the flood» insurance company. Develop a method to convert data so that it is difficult to recover personal information.
Сервис по продаже автомобилей с пробегом «Не бит, не крашен» разрабатывает приложение для привлечения новых клиентов. В нём можно быстро узнать рыночную стоимость своего автомобиля. В вашем распоряжении исторические данные: технические характеристики, комплектации и цены автомобилей. Вам нужно построить модель для определения стоимости.
Car sales service with mileage «Not broken, not painted» develops an application to attract new customers. In it you can quickly find out the market value of your car. Historical data: technical specifications, equipment and prices of cars are at your disposal. You need to build a model to determine the price.
Компания «Чётенькое такси» собрала исторические данные о заказах такси в аэропортах. Чтобы привлекать больше водителей в период пиковой нагрузки, нужно спрогнозировать количество заказов такси на следующий час. Постройте модель для такого предсказания.
«Cool Taxi» Company has collected historical data on taxi orders at airports. To attract more drivers during the peak load, you need to predict the number of taxi orders for the next hour. Build a model for such a prediction.
Машинное обучение для текстов
Интернет-магазин «Викишоп» запускает новый сервис. Теперь пользователи могут редактировать и дополнять описания товаров, как в вики-сообществах. То есть клиенты предлагают свои правки и комментируют изменения других. Магазину нужен инструмент, который будет искать токсичные комментарии и отправлять их на модерацию.
Обучите модель классифицировать комментарии на позитивные и негативные. В вашем распоряжении набор данных с разметкой о токсичности правок.
Machine learning for texts
Online store «Wikishop» launches a new service. Now users can edit and supplement product descriptions, as on wikis. That is, customers offer their edits and comment on changes made by others. The store needs a tool that will search for toxic comments and send them to moderation.
Teach the model to categorize comments into positive and negative. At your disposal is a data set with markings on the toxicity of edits.
Вы аналитик российской авиакомпании F9, выполняющей внутренние пассажирские перевозки. Важно понять предпочтения пользователей, покупающих билеты на разные направления. Вам предстоит изучить базу данных и проанализировать спрос пассажиров на рейсы в города, где проходят крупнейшие культурные фестивали.
You are an analyst of the Russian airline F9, which performs domestic passenger transportation. It is important to understand the preferences of users who buy tickets to different destinations. You will have to study the database and analyze passenger demand for flights to cities where major cultural festivals are held.
Сетевой супермаркет «Хлеб-Соль» внедряет систему компьютерного зрения для обработки фотографий покупателей. Фотофиксация в прикассовой зоне поможет определять возраст клиентов, чтобы:
Network supermarket «Bread and salt» introduces a computer vision system for processing photos of customers. Photofixing in the checkout area will help determine the age of customers to:
Оператор связи «Ниединогоразрыва.ком» хочет научиться прогнозировать отток клиентов. Если выяснится, что пользователь планирует уйти, ему будут предложены промокоды и специальные условия. Команда оператора собрала персональные данные о некоторых клиентах, информацию об их тарифах и договорах.