VII. ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅
1). ΠΡΠΎΠ²Π΅ΡΡΡΠ΅, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ (Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ)
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π‘ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΌΡ Π²ΡΡΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ Π°Π»Π³Π΅Π±ΡΡ. ΠΡΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄. ΠΠ°ΠΊ Π±ΡΠ΄ΡΠΎ ΠΌΡ ΠΊΠΎΠΏΠΈΡΡΠ΅ΠΌ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° β ΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌ ΡΡΠΎΡ ΠΏΠ°ΡΡΠ΅ΡΠ½ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ. ΠΡΠ»ΠΈ Π²Ρ ΡΡΠΈΡΠ΅ΡΡ Π² ΠΌΠ°ΡΠΊΠ»Π°ΡΡΠ΅ ΠΈΠ»ΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅ Π²ΡΠ·Π° β Π²Π°ΠΌ ΠΌΠΎΠ³ΡΡ Π²ΡΡΡΠ΅ΡΠΈΡΡΡΡ Π²ΠΎΡ ΡΠ°ΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ:
1. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π». ΠΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π΅Π½ Π΄Π²ΡΠΌ ΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΡΡΠ½ΠΊΡΠΈΡ Π² Π΄ΡΡΠ³ΠΈΡ
ΡΠΎΡΠΊΠ°Ρ
β ΠΌΡ Π½Π΅ Π·Π½Π°Π΅ΠΌ. ΠΠΎ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ
ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π»ΠΈΠ½ΠΎΠΉ 2, ΡΡΠΎ ΠΈ Π½Π°ΡΠΈΡΠΎΠ²Π°Π½ΠΎ.
2. ΠΡΠ°ΡΠΈΠΊ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΎΡ 0 Π΄ΠΎ 1; ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 2. ΠΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ f(4 ).
ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΅ΡΠ½Π°Ρ, Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΡΡΡΠΎΠΈΠΌ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΡΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΡ ΡΠ°ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ 0 Π΄ΠΎ 1.
ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 2. ΠΠΎΠ²ΡΠΎΡΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΡΡΠ°ΡΡΠΎΠΊ Π΄Π»ΠΈΠ½Ρ 2, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΆΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½.
3. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΆΠ°ΡΠΈΠ΅ΠΌ Π² 3 ΡΠ°Π·Π° ΠΏΠΎ ΠΎΡΠΈ X (ΡΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΡ Β«ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ).
Π Π°ΡΡΡΠΆΠ΄Π°Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, ΠΏΠΎΠ»ΡΡΠΈΠΌ, ΡΡΠΎ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π΅Π½ ΠΠ° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΠ²Π½ΠΎ 5 ΠΏΠΎΠ»Π½ΡΡ
Π²ΠΎΠ»Π½ ΡΡΠ½ΠΊΡΠΈΠΈ
4. ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 12, Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 8. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΡΠ°ΡΠ½ΠΎΠΌΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ
.
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΡΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π΅Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° T (ΠΎΡΠ»ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡ Π½ΡΠ»Ρ).
Π€ΡΠ½ΠΊΡΠΈΡ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Tβ 0, ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
Π§ΠΈΡΠ»ΠΎ T Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
ΠΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x-T ΠΈ x+T ΡΠ°ΠΊΠΆΠ΅ Π²Ρ
ΠΎΠ΄ΡΡ Π² ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
1) ΠΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ y=f(x) Π΅ΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ f(x-T)= f(x)=f(x+T).
2) ΠΠ»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ y=f(x) Π΅ΡΠ»ΠΈ T1 β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ
Π’Π°ΠΊ ΠΊΠ°ΠΊ T2 ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x), ΡΠΎ Π΄Π»Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x-T1
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΈΡΠ»ΠΎ T1 +T2 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x).
3) ΠΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΈΠ· ΡΠ²ΠΎΠΉΡΡΠ²Π° 2, Π΅ΡΠ»ΠΈ T Π²Π·ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ n ΡΠ°Π·.
4) ΠΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΡΠΎ Π΄Π»Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° kx+b
ΠΠ½Π°ΡΠΈΡ ΡΠΈΡΠ»ΠΎ T/k β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ f(kx+b).
5) ΠΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅Π΄ΡΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠΌΠΌΡ f(x) ΠΈ g(x):
ΠΠ· ΡΠ²ΠΎΠΉΡΡΠ²Π° 3 ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
ΠΡΠ»ΠΈ ΡΡΠ΅Π΄ΠΈ Π²ΡΠ΅Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ , ΡΠΎ Π΅Π³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π³Π»Π°Π²Π½ΡΠΌ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ .
ΠΡΠΈΠΌΠ΅ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
1) ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°
ΡΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x ΠΈ y=cos x ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=2Ο .
2) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y=tg x Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
tg (x-Ο )=tg x =tg (x-Ο ), ΡΠΎ y=tg x β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=Ο .
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, y=ctg x β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=Ο.
3) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° x ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° k Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ D(x+k)=D(x), ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΠΈΡΠΈΡ
Π»Π΅ D(x) β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβQ, kβ 0.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡΠΊΠ°Π·Π°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΡ ΠΠΈΡΠΈΡ
Π»Π΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
4) Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=b, b β Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (bβR). ΠΡΠ° ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π» ΠΈ ΠΏΡΠΈ Π»ΡΠ±ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ
Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y=b, ΡΠΎ Π΅ΡΡΡ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° m (mβR), y(x)=y(x+m)=b.
ΠΠ½Π°ΡΠΈΡ y=b β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=m, Π³Π΄Π΅ mβR, mβ 0.
Π’Π°ΠΊ ΠΊΠ°ΠΊ m β Π»ΡΠ±ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΠ½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ½ΠΊΡΠΈΡ y=b Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
5) Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ x ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ³ΠΎ k Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ =, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π΄ΡΠΎΠ±Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠΈΡΠ»Π° y= β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβΞ, kβ 0.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ΅Π»ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, T=1 β Π³Π»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=.
ΠΠ»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=sin x ΠΈ y=cos x T=2Ο.
ΠΠ»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΉ y=tg x ΠΈ y=ctg x T=Ο.
ΠΡΠ»ΠΈ T β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x, ΡΠΎ sin (x-2Ο )=sin x = sin (x-2Ο ) Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x.
Π’ΠΎ Π΅ΡΡΡ Π»ΡΠ±ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ 2Ο n, nβZ.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΡΠΈ n=1 ΠΈ ΠΎΠ½ΠΎ ΡΠ°Π²Π½ΠΎ T=2Ο .
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, 2Ο β Π³Π»Π°Π²Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin x.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΎ Π³Π»Π°Π²Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΡΡΠ½ΠΊΡΠΈΠΉ y=cos x, y=tg x ΠΈ y=ctg x.
ΠΠ· 4-Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ y=sin (kx+b) ΠΈ y=cos (kx+b) (kβ 0) Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄
Π° Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ y=tg (kx+b) ΠΈ y=ctg (kx+b) (kβ 0) Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ T (Π½Π° ΠΎΡΠΈ Ox).
ΠΠ°Π½Π° ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ T.
Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΎΡ ΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Ox Π½Π° Β±T, Β±2T,β¦ :
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ F(x) β ΡΡΠ½ΠΊΡΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° x, ΡΠΎ ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ T, ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ x F(x + T) = F(x). ΠΡΠΎ ΡΠΈΡΠ»ΠΎ T ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ½ΠΊΡΠΈΡ F = const Π΄Π»Ρ Π»ΡΠ±ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π° ΠΏΠΎΡΠΎΠΌΡ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΈΡΠ°ΡΡΡΡ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΠ±ΡΡΠ½ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ³ΠΎ Π΄Π»Ρ ΠΊΡΠ°ΡΠΊΠΎΡΡΠΈ ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΎΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΡΠ»ΠΈ F(x) β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T, ΠΈ Π΄Π»Ρ Π½Π΅Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, ΡΠΎ ΡΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f(x) = Fβ²(x) β ΡΠΎΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ T. ΠΠ΅Π΄Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x ΡΠ°Π²Π½ΠΎ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠ° Π΅Π΅ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ, Π° ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ, ΡΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin(x) ΡΠ°Π²Π½Π° cos(x), ΠΈ ΠΎΠ½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½Π°. ΠΠ΅ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ cos(x), Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ βsin(x). ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎ.
ΠΠ΄Π½Π°ΠΊΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° Π²Π΅ΡΠ½ΠΎ. Π’Π°ΠΊ, ΡΡΠ½ΠΊΡΠΈΡ f(x) = const ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ, Π° Π΅Π΅ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½Π°Ρ F(x) = const*x + C β Π½Π΅Ρ.
ΠΡΠ»ΠΈ F1(x) ΠΈ F2(x) β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈ ΠΈΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ°Π²Π½Ρ T1 ΠΈ T2 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠΎ ΡΡΠΌΠΌΠ° ΡΡΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΡΡΠΎΠΉ ΡΡΠΌΠΌΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. ΠΡΠ»ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π΅Π»Π΅Π½ΠΈΡ T1/T2 β ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΡΡΠΌΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½Π°, ΠΈ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΡΠ°ΡΠ½ΠΎΠΌΡ (ΠΠΠ) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 12, Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Π²ΡΠΎΡΠΎΠΉ β 15, ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΡ
ΡΡΠΌΠΌΡ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ ΠΠΠ (12, 15) = 60.
ΠΠ°Π³Π»ΡΠ΄Π½ΠΎ ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΡΠ°ΠΊ: ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ΄ΡΡ Ρ ΡΠ°Π·Π½ΠΎΠΉ Β«ΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠ°Π³Π°Β», Π½ΠΎ Π΅ΡΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈΡ
ΡΠΈΡΠΈΠ½ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΡΠΎ ΡΠ°Π½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ·Π΄Π½ΠΎ (Π° ΡΠΎΡΠ½Π΅Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠ΅ΡΠ΅Π· ΠΠΠ ΡΠ°Π³ΠΎΠ²), ΠΎΠ½ΠΈ ΡΠ½ΠΎΠ²Π° ΡΡΠ°Π²Π½ΡΡΡΡΡ, ΠΈ ΠΈΡ
ΡΡΠΌΠΌΠ° Π½Π°ΡΠ½Π΅Ρ Π½ΠΎΠ²ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄.
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ»ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ»(11 ΠΊΠ»Π°ΡΡ,ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅) ΠΠ½Π»Π°ΠΉΠ½-ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ Β«Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΡΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΡΠ½ΠΊΠ° ΡΡΡΠ΄Π° ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠ°Β» Π‘Π²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ ΡΠΊΠΈΠ΄ΠΊΠ° Π½Π° ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΡΡΠ°ΡΡΠ½ΠΈΠΊΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ 11 ΠΊΠ»Π°ΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π’β 0,ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Ρ
ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ
+Π’ ΠΈ Ρ
-Π’ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° f(x-Π’)=f(x)=f(x+Π’). Π§ΠΈΡΠ»ΠΎ Π’ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f(x)
ΠΠ°Π΄Π°ΡΠ°1 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)=sinx+1 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ f(x)=sinx+1 ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° R. f(x+2Ο)=sin(x+2Ο)+1=sinx+1=f(x)
ΠΠ°Π΄Π°ΡΠ° 3 ΠΠΎΠΊΠ°Π·Π°ΡΡ,ΡΡΠΎ f(x)= ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο Π Π΅ΡΠ΅Π½ΠΈΠ΅: x f (x+2Ο)=
ΠΠ°Π΄Π°ΡΠ° 6 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: f(x+Π’)=f(x) ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΡΠΈ n=1
ΠΠ°Π΄Π°ΡΠ° 7 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ n=1 Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 8 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π€ΡΠ½ΠΊΡΠΈΡ y=cosx ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ 2Ο. Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠ°Π΄Π°ΡΠ° 9 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ sin2x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ cos3x ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅.Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅.Π’=2Ο
ΠΠ°Π΄Π°ΡΠ° 10 ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π° ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π’ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΊΡΠ°ΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ,Ρ.Π΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅. Π’=6Ο
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Π΅ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π€ΠΠΠ‘ ΠΠ
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°Π½ΠΈΡ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠΎΠΌΠ΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°: ΠΠ-233469
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π ΠΎΡΡΠΈΡΠ½Π΅ ΡΠ°ΡΠ΅ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠ΅Π² ΡΠΈΡΠ°ΡΡ Π΄Π΅ΡΡΠΌ ΡΡΡΠ°ΡΠ½ΡΠ΅ ΠΈ ΠΏΠ΅ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠ½ΠΈΠΆΠΊΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π£ΡΠΈΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ 1,5 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ±Π»Π΅ΠΉ Π·Π° ΠΏΠ΅ΡΠ΅Π΅Π·Π΄ Π² ΠΠ»Π°ΡΠΎΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π ΠΠΠΠ£ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ Π½ΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 4 ΠΌΠΈΠ½ΡΡΡ
Π£ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Ρ ΡΡΠΎΠΊΠΈ Π·Π°ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ° ΠΠΠ¨
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ
ΡΠΏΠΎΡΠ½ΡΡ
ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ
ΡΡ ΡΠ°ΠΌΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ
Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ
Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
ΠΡΡΠΎΡΠ½ΠΈΠΊ
ΠΠ°ΠΌ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΠ°Π²ΠΈΡΡΡ