Как доказать что система векторов линейно независима
Линейная зависимость и независимость, свойства, исследование системы векторов на линейную зависимость, примеры и решения.
Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.
Навигация по странице.
Определение линейной зависимости и линейной независимости системы векторов.
Так мы подошли к определению линейной зависимости системы векторов .
Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел
есть хотя бы одно, отличное от нуля, то система векторов
называется линейно зависимой.
Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа
равны нулю, то система векторов
называется линейно независимой.
Свойства линейной зависимости и независимости.
На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов.
Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.
Так как система векторов линейно зависима, то равенство
возможно при наличии хотя бы одного ненулевого числа из чисел
. Пусть
.
Добавим к исходной системе векторов еще s векторов , при этом получим систему
. Так как
и
, то линейная комбинация векторов этой системы вида
представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.
Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.
Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.
Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.
Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство
возможно только тогда, когда
. Однако, если взять любое
, отличное от нуля, то равенство
все равно будет справедливо, так как
. Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.
Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов
линейно независима, то ни один из векторов не выражается через остальные.
Сначала докажем первое утверждение.
Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число
и при этом верно равенство
. Это равенство можно разрешить относительно
, так как
, при этом имеем
Следовательно, вектор линейно выражается через остальные векторы системы
, что и требовалось доказать.
Теперь докажем второе утверждение.
Так как система векторов линейно независима, то равенство
возможно лишь при
.
Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является
, тогда
. Это равенство можно переписать как
, в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором
отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.
Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и
, где
– произвольное число, то она линейно зависима.
Исследование системы векторов на линейную зависимость.
Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .
Логичный вопрос: «как ее решать?»
Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:
Как же быть в остальных случаях, которых большинство?
Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье ранг матрицы: определение, методы нахождения.
А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.
Что будет означать линейная независимость системы векторов ?
Что же будет означать линейная зависимость системы векторов ?
Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)
Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.
Следует заметить, что при p>n система векторов будет линейно зависимой.
Замечание: при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.
Алгоритм исследования системы векторов на линейную зависимость.
Разберем алгоритм на примерах.
Примеры исследования системы векторов на линейную зависимость.
Дана система векторов . Исследуйте ее на линейную зависимость.
Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.
система векторов линейно зависима.
Исследуйте систему векторов на линейную зависимость.
система векторов линейно зависима.
Является ли система векторов линейно зависимой?
Является ли система векторов линейно независимой?
Докажите, что система векторов
линейно независима.
Составим матрицу, строками которой будут векторы данной системы:
Покажем, что ранг этой матрицы равен количеству векторов исходной системы, то есть, четырем.
Переходим к поиску окаймляющего минора третьего порядка:
Осталось найти минор четвертого порядка, отличный от нуля. Вычислим определитель
Прибавим к первому столбцу третий, далее разложим определитель по элементам первого столбца:
Таким образом, ранг матрицы А равен четырем что доказывает линейную независимость исходной системы векторов.
Мы ознакомились с понятиями и свойствами линейной зависимости и линейной независимости системы векторов, получили метод исследования системы векторов на линейную зависимость, преобразовали его в алгоритм, и подробно разобрали решения характерных примеров.
Как доказать что система векторов линейно независима
Покажем, что эти определения эквивалентны.
Пусть выполняется определение 1, т.е. один из векторов системы равен линейной комбинации остальных:
,
.
Линейная комбинация системы векторов равна нулевому вектору, причем не все коэффициенты этой комбинации равны нулю, т.е. выполняется определение 1´.
,
,
.
Один из векторов системы мы представили в виде линейной комбинации остальных, т.е. выполняется определение 1.
. (1, 0, 0, …, 0),
(0, 1, 0, …, 0),
(0, 0, 0, …, 1).
Доказательство. Пусть линейная комбинация этих векторов с произвольными коэффициентами равна нулевому вектору.
Из этого равенства следует, что все коэффициенты равны нулю. Получили противоречие.
.
Теорема 2. Если системы векторов содержит нулевой вектор, то она линейно зависима.
Следовательно, система линейно зависима.
Теорема 3. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.
Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.
Предположим противное, т.е. некоторая подсистема линейно зависима. Из теоремы следует, что вся система линейно зависима. Мы пришли к противоречию.
Линейная зависимость системы векторов. Коллинеарные векторы
В данной статье мы расскажем:
Коллинеарные векторы
Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.
Условия коллинеарности векторов
Два векторы являются коллинеарными, если выполняется любое из следующих условий:
Условие 2 неприменимо, если одна из координат вектора равна нулю.
Условие 3 применимо только к тем векторам, которые заданы в пространстве.
Примеры задач на исследование коллинеарности векторов
Исследуем векторы а = ( 1 ; 3 ) и b = ( 2 ; 1 ) на коллинеарность.
В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:
Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.
Ответ: a | | b
Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:
Критерии линейной зависимости и линейной независимости систем векторов
Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.
в которой хотя бы один из коэффициентов комбинации не равен нулю.
Делим обе части равенства на ненулевой коэффициент:
Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).
Пусть один из векторов можно линейно выразить через все остальные векторы системы:
Переносим вектор e k в правую часть этого равенства:
Свойства линейно зависимых векторов
Примеры решения задач на линейную зависимость или линейную независимость векторов
Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.
Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:
x 1 a + x 2 b + x 3 c 1 = 0
Записываем векторное уравнение в виде линейного:
Решаем эту систему при помощи метода Гаусса:
Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:
Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:
10. Линейная зависимость и независимость векторов
Рассмотрим далее основополагающие в линейной алгебре понятие о линейной зависимости и независимости векторов, а также определение базиса системы векторов.
Любую конечную последовательность векторов Будем называть системой векторов, а любую ее подпоследовательность – подсистемой векторов. Линейной комбинацией векторов
назовем вектор
, равный сумме произведений произвольных чисел
на векторы системы, т. е.
.
Система векторов называется линейно независимой, если их линейная комбинация равна нулевому вектору только в том случае, когда все числа
равны нулю. В обратном случае система векторов называется линейно зависимой. Отсюда, система векторов является линейно зависимой в том случае, когда линейная комбинация векторов равна нулевому вектору, а хотя бы один числовой коэффициент отличен от нуля.
Линейная зависимость и независимость есть свойства системы векторов. Однако часто соответствующие прилагательные относят и к самим векторам. Поэтому вместо «линейно независимая система векторов» допустимо говорить «линейно независимые векторы».
Например, двумерные арифметические векторы И
Линейно независимы. Их линейная комбинация
равна вектору
, который обращается в нулевой вектор
Только тогда, когда
и
.
Если взять векторы И
, то они являются линейно зависимыми, так как их линейная комбинация равна нулевому вектору при
И
, не равных нулю.
Из определения линейной зависимости (независимости) системы векторов вытекают следующие утверждения.
1) Если некоторая система векторов содержит нулевой вектор, то она является линейно зависимой.
Пусть для определенности первый вектор системы является нулевым, т. е.
Тогда линейная комбинация векторов вида равна нулевому вектору, что и доказывает наше утверждение.
2) Если среди векторов системы есть такие, которые сами образуют линейно зависимую подсистему, то вся система также линейно зависима.
Так как исходная подсистема линейно зависима, то среди коэффициентов линейной комбинации векторов подсистемы имеется хотя бы один отличный от нуля. Добавим к этой линейной комбинацию линейную комбинацию векторов, не вошедших в исходную подсистему, с числовыми коэффициентами, равными нулю. Мы получим линейную комбинацию из векторов полной системы, которая равна нулевому вектору, причем имеется хотя бы один коэффициент отличный от нуля. Таким образом, наше утверждение доказано.
3) Если система векторов линейно независима, то и любая ее подсистема также линейно независима.
Если предположить обратное, т. е. существование некоторой линейно зависимой подсистемы, то по предыдущему утверждению отсюда следует зависимость исходной системы, что противоречит условию доказываемой теоремы. Полученное противоречие доказывает сформулированное утверждение.
4) Для того чтобы система из Ненулевых векторов была линейно зависима необходимо и достаточно, чтобы хотя бы один из векторов системы мог быть представлен как линейная комбинация предшествующих векторов.
Необходимость. Пусть система векторов линейно зависима. Тогда равенство
выполняется при том условии, что хотя бы одно из чисел в левой части равенства отлично от нуля. Будем перебирать эти числа, начиная с большего номера, и остановимся на некотором номере
таком, что соответствующий коэффициент отличен от нуля, т. е.
. Номер
не может быть равен единице, так как иначе из условий
И теоремы о нулевом произведении следовало бы равенство
, что противоречит правилу выбора номера
и условию теоремы. Таким образом
, и справедливо равенство
. Отсюда находим вектор
Таким образом, чтобы он является линейной комбинацией предшествующих ему векторов, а именно
.
Достаточность. Пусть имеется некоторый вектор , который представлен в виде линейной комбинации предшествующих ему векторов
. Тогда выполняется условие
, что по определению означает линейную независимость исходной системы векторов.
По аналогичной схеме доказывается следующее утверждение.
5) Система векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов системы может быть представлен в виде линейной комбинации остальных векторов.