Как доказать что точка лежит в плоскости треугольника
Определение принадлежности точки треугольнику
Дано: у нас есть треугольник, нам известны только координаты его вершин. У нас есть точка, нам известны её координаты.
Что нужно узнать: нужно установить принадлежность точки треугольнику.
В данной статье разбирается несколько разных методов определения принадлежности точки треугольнику.
Метод сравнения площадей
В данном методе сначала находятся площади 3-х треугольников, которые образует данная точка с каждой стороной треугольника. В нашем случае(рис. 1) это треугольники ABP, BCP, CAP и их площади s1, s2, s3 соответственно.
Затем находится площадь самого треугольника ABC.
Найденный площади сравниваются — если сумма 3-х площадей равна площади всего треугольника, то значит точка принадлежит треугольнику. При сравнении, как правило, задаётся погрешность.
Так как у нас известны только координаты точек, то все площади, находятся по формуле Герона, от обильности операций которой становится ясно, почему этот метод очень трудоёмкий.
Простейшая реализация алгоритма:
Атрибуты функции: aAx, aAy, aBx, aBy, aCx, aCy — координаты точек A, B, C треугольника; aPx, aPy — координаты точки, принадлежность которой надо определить.
Метод относительности
Данный метод заключается в следующем. Сначала выбирается ориентация движения по вершинам треугольника(по часовой или против часовой стрелке). Я выбираю по часовой. На рисунке 2 выбранная ориентация движения(по часовой) показана стрелками. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Не трудно догадаться, что если точка для всех прямых, при нашей ориентации, лежит с правой стороны, то значит точка принадлежит треугольнику, а если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.
На рисунке 2 продемонстрирована ситуация, когда точка только для одной прямой AB лежит по левую сторону, а значит не принадлежит треугольнику.
Всё относительно!
Тут надо кое что пояснить, весьма не маловажное, что может сыграть роль в оптимизации и выборе алгоритма. Обратите внимание, что в приведённом коде есть закомментированные блоки кода с комментариями «для строгой ориентации», в то время как рабочий код универсален — он предназначен для любой ориентации. Т.е. представленный код определит принадлежность точки для любого заданного треугольника. В моей тестирующей программе треугольники как раз таки строятся по random()-у координат вершин, а ориентация идёт по вершинам(A>B>C>A). Для рисунка 2 — это по часовой стрелки, но для рисунка 3 — это против часовой.
Так вот, в случае рисунка 3 точка должна лежать по левую сторону векторов, чтобы принадлежать треугольнику.
Вот тут и получается важный момент! Если вы уверены, что в вашем проекте все треугольники будут ориентированы по часовой стрелке(а т.е. вершина C будет всегда правее вектора AB), то вам можно закомментировать блок универсального решения и раскомментировать блок «для строгой ориентации по часовой» и данный алгоритм упрощается аж на 3 логических операции!
Векторный метод
Третий метод который я освещаю для меня самый интересный.
Идея его применения зарождается если взглянуть на треугольник как на половинку параллелограмма…
Данный метод я сначала проверил на бумаге. После всех оптимизаций формул, как всё сошлось, я реализовал его в коде, где он показал себя вполне успешным и результативным. Аж эффективнее 2-х предыдущих методов :]
1) одну вершину треугольника помещаем в координаты (0;0);
2) две стороны, выходящие из этой вершины, представляем как вектора.
Таким образом из всего этого появляется система простых условий нахождения точки P между векторами b и c.(рис. 4)
Как проверить принадлежит ли точка треугольнику?
Как проверить, принадлежит ли точка треугольнику
Пожалуйста, помогите найти ошибку: Sub xy() Dim x1, y1, x2, y2, x3, y3 As Single x1 =.
Проверить, принадлежит ли точка M(x,y) треугольнику с заданными вершинами
помогите плиз две задачки решить: Проверить, принадлежит ли точка M(x,y) треугольнику с.
Проверить принадлежит ли точка плоскости с координатами (x,y) треугольнику с заданными вершинами
Даны два вещественных числа x,y. Если точка плоскости с координатами (x,y) принадлежит треугольнику.
Принадлежит ли точка треугольнику
дан три угольник ABC с координатами вершин A(xa,ya), B(xb,yb), C(xc,yc), Пользователь водит.
точка будет принадлежать треугольнику, если будет принадлежать одновременно трем полуплоскостям, пересечение которых и есть треугольник.
далее нужно найти уравнения прямых, которые содержат стороны треугольника, составить 3 неравенства, и решить систему из этих 3х неравенств.
Решение
Добавлено через 13 минут
вот ещо одно решения етой задачи
Любое вычисление более-менее извращенных функций, вроде синуса-косинуса, или квадратного корня, явно снизит скорость выполнения данного алгоритма. Тут без вопросов, и спорить не о чем. Остается только согласиться.
С другой стороны, задача-то простая. Не элементарная, но достаточно простая. Somebody уже показал, что все решается без особого выпендрежа. Ну, и нафиг оно, усложнение!
Решение
Господа. Должен заметить, что код первого решения вроде как неверен. Я не знаю, проверял ли ПроСтоСанек свое решение, но он в цикле явно «гадит» мимо массива (из-за ++i вместо i++)
Выкладываю код моего решения, которое проверено и работает (косметические изменения плюс исправленая ошибка, для тех, кто обожает копипасту с форумов =) ).
При обнаружении в программе цикла for первым выполняется инициализирующее_выражение, в котором обычно устанавливается счетчик цикла. Это происходит только один раз перед запуском цикла. Затем анализируется условное_выражение, которое также называется условием прекращения цикла. Пока оно равно true, цикл не прекращается.
Каждый раз после всех строк тела цикла выполняется модифицирующее_выражение, в котором происходит изменение счетчика цикла. Как только проверка условного_выражения даст результат false, все строки тела цикла и модифицирующее_выражение будут пропущены и управление будет передано первому выражению, следующему за телом цикла.
Содержание:
Стереометрия:
Что такое стереометрия
Схематически это выглядит так:
Фигуры, которые изучаются в стереометрии, называются геометрическими или пространственными. На рисунке 2.1 изображены некоторые пространственные фигуры: пирамида, параллелепипед, конус, цилиндр.
Напомним структуру логического построения планиметрии:
В стереометрии рассматривают более одной плоскости. Пространство состоит из бесконечного количества плоскостей, прямых и точек. Поэтому все аксиомы планиметрии имеют место и в стереометрии. Однако при этом некоторые из них приобретают другой смысл. Так, аксиома I, в планиметрии утверждает, что существуют точки вне данной прямой на плоскости, в которой лежит прямая. Именно в таком понимании эта аксиома применялась в процессе построения геометрии на плоскости. Теперь эта аксиома утверждает вообще существование точек, не лежащих на данной прямой, в пространстве. Из нее непосредственно не вытекает, что существуют точки вне данной прямой на плоскости, в которой лежит прямая. Это требует уже специального доказательства.
Аксиомы стереометрии
Формулирование некоторых аксиом планиметрии как аксиом стереометрии требует уточнения. Это касается, например, аксиом .
Приведем эти уточнения.
Понятно, что с увеличением количества основных фигур появляются новые аксиомы об их свойствах:
Аксиома 1 указывает на то, что любая плоскость все пространство не исчерпывает. Существуют точки пространства, которые ей не принадлежат.
Аксиома 2 утверждает, что две прямые, пересекающиеся в пространстве, всегда определяют одну плоскость. Из аксиомы 3 следует, что если две различные плоскости имеют общую точку, то они имеют множество общих точек, образующих прямую, которая содержит эту точку.
Итак, используя рисунок 2.3, аксиомы можно записать:
Плоскости изображают по-разному. На рисунке 2.4 показаны некоторые примеры различных изображений плоскостей.
Далее в стереометрии мы будем использовать все определяемые понятия планиметрии, дополнять их новыми, собственно стереометрическими, формулировать и доказывать свойства пространственных фигур.
Как видим, логическое построение планиметрии и стереометрии одинаково, отличаются они лишь некоторым содержанием основных понятий, аксиом, определений, теорем.
Пример №1
Точки не лежат на одной плоскости. Докажите, что прямые
и
не пересекаются.
Докажем методом от противного. Допустим, что прямые и
пересекаются (рис. 2.5).
Тогда, по аксиоме II3, через них можно провести плоскость, которой принадлежат эти прямые. Это означает, что точки также принадлежат этой плоскости, что противоречит условию. Предположение неверно. Прямые
и
не пересекаются, что и требовалось доказать.
Заметим, что школьный курс геометрии посвящен евклидовой геометрии. Несмотря на то что с течением времени геометрия Евклида была существенно дополнена и откорректирована, ее по-прежнему называют именем древнего ученого. Такое уважение вызвано широтой практического применения евклидовой геометрии. Она используется в технических науках, картографии, геодезии, астрономии и др.
Следствия из аксиом стереометрии
Проанализировав все сказанное ранее, можно утверждать, что логическое построение геометрии имеет следующий вид:
Важное место в геометрии занимают аксиомы. Они выражают наиболее существенные свойства основных геометрических фигур. Все остальные свойства геометрических фигур устанавливаются рассуждениями, опирающимися на аксиомы или ранее доказанные утверждения, которые опираются на аксиомы. Такие рассуждения называют доказательствами. Утверждение, истинность которого доказана и которое используют для доказательства других утверждений, называют теоремой. Простейшими из них являются утверждения для основных фигур стереометрии. Они называются следствиями из аксиом стереометрии. Рассмотрим теоремы, которые являются следствиями из аксиом стереометрии.
Теорема 1
Через прямую и точку, не принадлежащую ей, можно провести плоскость, и притом только одну.
Пусть — данная прямая и
— точка, не принадлежащая ей (рис. 2.9). Через точки
и
проведем прямую
. Прямые
и
различны и пересекаются в точке
. По аксиоме II3 через них можно провести плоскость
. Докажем, что она единственная, методом от противного.
Допустим, что существует другая плоскость , которая содержит прямую
и точку
. Тогда, согласно аксиоме II4, плоскости
и
пересекаются по общей прямой, которой принадлежат точки
что противоречит условию. Предположение неверно. Плоскость
— единственная. Теорема доказана.
Теорема 2
Если две точки прямой принадлежат плоскости, то и вея прямая принадлежит этой плоскости.
Пусть заданы прямая , плоскость
и точки А и В прямой
, принадлежащие
(рис. 2.10). Выберем точку С, которая не принадлежит прямой
. Через точку С и прямую
проведем плоскость
. Если
и
совпадут, то прямая
принадлежит плоскости
. Если же плоскости
и
различны и имеют две общие точки
и
, то они пересекаются по прямой
, содержащей эти точки. Поэтому через две точки
и
проходят две прямые
и
, что противоречит аксиоме принадлежности I2. Поэтому
и
— совпадают. Однако поскольку
, принадлежит плоскости
, то и прямая
также принадлежит
.
Теорема 3
Через три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну.
Пусть — заданные точки (рис. 2.11). Проведем через точки
и
прямую
, а через точки
и
— прямую
. Прямые
и
различны и имеют общую точку
. Через них можно провести плоскость
. Докажем, что она единственная, методом от противного. Допустим, что существует другая плоскость
, содержащая точки
. Тогда, по теореме 2, прямые
и
принадлежат плоскости
. Поэтому плоскости
и
имеют две общие прямые
и
, которые пересекаются, что противоречит аксиоме II3. Итак, плоскость
— единственная. Теорема доказана.
Отметим, если плоскость определена тремя точками, которые не лежат на одной прямой, например то в таком случае пользуются обозначением: (
). Читается: «плоскость, заданная точками
,
и
», или сокращенно «плоскость
».
Пример №2
Можно ли через точку пересечения двух данных прямых провести третью прямую, которая бы не лежала с ними в одной плоскости?
Через прямые и
(рис. 2.12), которые имеют общую точку
, можно провести плоскость
. Возьмем точку
, которая не принадлежит
. Через точки
и
проведем прямую
. Прямая
не лежит на плоскости
, так как если бы прямая
принадлежала плоскости
, то и точка
принадлежала бы плоскости
. Поэтому через точку пересечения прямых
и
можно провести третью прямую, которая не лежит с ними в одной плоскости. Ответ. Можно.
Очевидно, что точки плоскости задают прямые, которые будут принадлежать этой самой плоскости. Если же взять точку пересечения двух прямых на плоскости и точку вне плоскости, то через любые две точки пространства можно провести прямую. Эта прямая будет иметь только одну общую точку с плоскостью, а значит, будет ее пересекать.
Пример №3
Докажите, что все прямые, пересекающие две данные параллельные прямые, лежат в одной плоскости.
Пример №4
Докажите, что если прямые и
не лежат в одной плоскости, то прямые
и
также не лежат в одной плоскости.
Докажем методом от противного. Допустим, что прямые и
лежат в одной плоскости (рис. 2.14). Тогда точки
принадлежат этой плоскости, а следовательно, прямые
и
принадлежат этой плоскости, что противоречит условию. Предположение неверно, поэтому прямые
и
не принадлежат одной плоскости, что и требовалось доказать.
Пример №5
Сколько всего существует различных плоскостей, проходящих через прямую и точку в пространстве?
Если в пространстве даны прямая и точка, лежащая на ней, то ими определяется множество плоскостей, поскольку через прямую проходит множество различных плоскостей.
Если же точка не лежит на прямой, то по следствию из аксиом стереометрии такую плоскость можно построить только одну.
Ответ. Бесконечно много или одна.
Взяв вне этой прямой произвольную точку, мы всякий раз будем иметь другую плоскость, не совпадающую с ранее построенной. Таких плоскостей множество.
Через данную точку вне прямой можно провести либо прямую, которая пересекает данную прямую, либо прямую, параллельную данной. Оба случая задают одну плоскость.
Сечения
Анализируя окружающий мир и систематизируя его предметы по форме, мы убеждаемся, что много из них «усечены» или «склеены». Разъединив их, получим поверхность, которую называют их сечением.
С сечениями мы сталкиваемся в разнообразных ситуациях: в быту, в столярничестве, токарстве и т.д. Решением задач на сечения геометрических фигур или других тел занимаются в черчении и конструкторской практике. Сечения выполняют для пространственных геометрических фигур.
Каждая плоскость разбивает пространство на два полупространства, а концы отрезка могут лежать в различных полупространствах (рис. 2.20, а) относительно некоторой плоскости, на плоскости (рис. 2.20, б) или в одном полупространстве (рис. 2.20, в).
Если ни одна из двух точек не принадлежит плоскости, а отрезок, соединяющий их, имеет с этой плоскостью общую точку, то говорят, что данные точки лежат по разные стороны относительно плоскости, или отрезок пересекает плоскость. Если же как минимум две точки пространственной геометрической фигуры лежат по разные стороны плоскости, то говорят, что плоскость эту фигуру пересекает, такую плоскость называют секущей.
Фигура, которая состоит из всех общих точек геометрической фигуры и секущей плоскости, называется сечением геометрической фигуры. На рисунке 2.21 сечения изображены цветом.
Если плоскость грани многогранника и плоскость сечения имеют две общие точки, то они пересекаются по прямой, проходящей через эти точки. Эту прямую называют линией пересечения данных плоскостей.
Плоскость сечения многогранника имеет общие прямые с плоскостями граней многогранника. Прямую, по которой плоскость сечения пересекает плоскость любой грани многогранника, называют следом плоскости сечения. Следов столько, сколько плоскостей граней пересекает плоскость сечения.
При построении сечения следует помнить:
Рассмотрим примеры построения сечения многогранника секущей плоскостью.
Пример №6
Постройте сечение куба плоскостью, проходящей через середины ребер с общей вершиной.
Построение
Пусть — заданный куб (рис. 2.22). Выберем одну из вершин, например
, являющуюся общей для трех ребер
и
. Обозначим на этих ребрах точки
и
соответственно, являющиеся их серединами. Точки
и
не лежат на одной прямой, а поэтому определяют секущую плоскость (
). Точки
и
— общие точки плоскости сечения и грани
, поэтому
,
— сторона сечения.
Аналогично и
, поэтому
и
— две другие стороны сечения. Таким образом,
— искомое сечение.
Пример №7
Постройте сечение пирамиды плоскостью, которая проходит через ребро
и середину ребра
.
Построение
Пример №8
Постройте сечение пирамиды плоскостью, проходящей через три точки, которые лежат соответственно на ребрах
,
.
Построение
Рассмотрим случай, когда ни одна из прямых, проходящих через эти точки, не будет параллельна сторонам граней.
Пусть — секущая плоскость, проходящая через заданные точки
,
и
. Построим сечение, выполняя последовательно шаги:
Мы нашли две стороны фигуры сечения: отрезки и
(рис. 2.24, а). Точка
— общая точка двух плоскостей (
) и (
). Такие плоскости (по аксиоме II4) пересекаются по прямой, проходящей через точку
. Для построения такой прямой нужна вторая точка.
3. Плоскости () и (
) пересекаются по прямой
.
по условию не параллельна
и
, поэтому
(рис. 2.24, б).
4. Прямая — линия пересечения плоскостей (
) и (
). Пересечение этой прямой с ребром
дает точку
, которая является вершиной сечения. Таким образом, четырехугольник
— искомое сечение (рис. 2.24, в).
Пример №9
Постройте сечение прямоугольного параллелепипеда плоскостью, проходящей через середины
и
ребер
и
и точку
пересечения диагоналей грани (рис. 2.25, а).
Построение
Обозначим секущую плоскость . Выполним последовательно шаги, выполняя поиск фигуры, образованной плоскостью сечения.
Таким образом, пятиугольник — искомое сечение (рис. 2.25, г).
Приведем краткие описания построения сечения куба плоскостью, проходящей через три точки.
Пример №10
Постройте сечение куба плоскостью, проходящей через точки ,
,
, которые принадлежат соответственно ребрам
.
Построение
Секущая плоскость ) (рис. 2.26).
Пример №11
Постройте сечение куба плоскостью, проходящей через точки К, М, Т, которые принадлежат соответственно ребрам ,
.
Секущая плоскость (рис. 2.27).
Пример №12
Постройте сечение куба плоскостью, проходящей через точки ,
,
, которые принадлежат соответственно ребрам
,
,
.
Построение
Секущая плоскость (рис. 2.28).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.