Как доказать что вокруг четырехугольника можно описать окружность
Около четырехугольника можно описать окружность
Теорема (свойство вписанного четырёхугольника)
Сумма противолежащих углов вписанного четырёхугольника равна 180°.
Дано: ABCD вписан в окр. (O; R)
∠A — вписанный угол, опирающийся на дугу BCD.
∠C — вписанный угол, опирающийся на дугу DAB.
Так как вписанный угол равен половине дуги, на которую он опирается, то
Что и требовалось доказать.
Теорема (признак вписанного четырёхугольника)
Около четырёхугольника можно описать окружность, если сумма его противолежащих углов равна 180°.
Дано: ABCD — четырёхугольник,
Доказать: ABCD можно вписать в окружность
Опишем окружность около треугольника ABC и докажем, что точка D лежит на этой окружности.
Доказательство будем вести методом от противного.
Предположим, что точка D не лежит на описанной около треугольника ABD окружности. Тогда D лежит либо внутри этой окружности, либо вне её.
Пусть точка D лежит внутри окружности и луч AD пересекает окружность в точке E.
В этом случае четырёхугольник ABCE — вписанный, и сумма его противолежащих углов равна 180°: ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Отсюда следует, что ∠D=∠E.
Но угол D — внешний угол треугольника DCE при вершине D.
Так как внешний угол треугольника равен сумме двух внутренних не смежных с ним углов, то
∠ADC=∠DEC+∠DCE, то есть угол D не может быть равным углу E. Пришли к противоречию. А значит, точка D не может лежать внутри окружности, описанной около треугольника ABC.
Предположим, что точка D лежит вне описанной около треугольника ABC окружности.
Луч AD пересекает окружность в точке E.
Тогда ABCE — вписанный четырёхугольник и ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Получаем, что ∠D=∠E.
Но угол E — внешний угол треугольника ECD при вершине E. А значит,
∠AEC=∠EDC+∠DCE, то есть углы D и E не могут быть равными. Противоречие получили потому, что предположили, что точка D лежит вне окружности.
Так как точка D не может лежать внутри либо вне описанной около треугольника ABC окружности, то D лежит на этой окружности. Это значит, что около четырёхугольника ABCD можно описать окружность.
Что и требовалось доказать.
На основании свойства и признака вписанного четырёхугольника сформулируем необходимое и достаточное условие вписанного четырёхугольника.
Теорема (Необходимое и достаточное условие вписанного четырёхугольника)
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма уго противолежащих углов равна 180°.
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырёхугольники и их свойства
Теорема 1 доказана.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | |||||||||||||||||||||||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||
Окружность, описанная около ромба | |||||||||||||||||||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||
Окружность, описанная около трапеции | |||||||||||||||||||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||
Окружность, описанная около дельтоида | |||||||||||||||||||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||
Произвольный вписанный четырёхугольник | |||||||||||||||||||||||
Окружность, описанная около ромба | |||||||||||||||||||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||
Окружность, описанная около трапеции | |||||||||||||||||||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||
Окружность, описанная около дельтоида | |||||||||||||||||||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||
Произвольный вписанный четырёхугольник | |||||||||||||||||||||||
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты: где a, b, c, d – длины сторон четырёхугольника, Теорема ПтолемеяДокажем, что справедливо равенство: Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4). откуда вытекает равенство:
Четырехугольник, вписанный в окружностьРассмотрим, что такое четырехугольник, вписанный в окружность и около какого четырехугольника можно описать окружность. Четырехугольник называется вписанным в окружность, если все вершины четырехугольника лежат на окружности. Четырехугольник ABCD — вписанный в окружность. Все его вершины — точки A, B, C, D — лежат на окружности. 1) Четырехугольник можно вписать в окружность, если сумма его противолежащих углов равна 180º. 2) Если сумма противолежащих углов четырехугольника равна 180º, то этот четырехугольник можно вписать в окружность. вписанный в окружность. 1) Из всех параллелограммов вписать в окружность можно только прямоугольник (в том числе, в квадрат).
Радиус описанной около прямоугольника окружности равен половине его диагонали. Через стороны прямоугольника радиус описанной окружности равен Если стороны прямоугольника обозначить как a и b, то 2) Из всех трапеций вписать в окружность можно только равнобедренную трапецию.
Описанные четырехугольникиAH = AE, BF = BE, CF = CG, DH = DG, Складывая эти равенства, получим: AH + BF + CF + DH = то справедливо равенство что и требовалось доказать. Следовательно, справедливы равенства Окружность касается касается стороны BC (рис.4). В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана. Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства: Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен. Итак, возможен и реализуется лишь случай 1. Из доказательства теоремы 2 непосредственно вытекает В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений. Примеры описанных четырёхугольников
| |||||||||||||||||||||||
Квадрат | |||||||||||||||||||||||
В любой квадрат можно вписать окружность | |||||||||||||||||||||||
Прямоугольник | |||||||||||||||||||||||
В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | |||||||||||||||||||||||
Параллелограмм | |||||||||||||||||||||||
В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | |||||||||||||||||||||||
Дельтоид | |||||||||||||||||||||||
Трапеция | |||||||||||||||||||||||
В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований Вписанная в четырехугольник окружностьОписанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник. Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности? В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
И обратно, если суммы противоположных сторон четырехугольника равны: то в четырехугольник ABCD можно вписать окружность. Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис.
AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD, то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д. 3. Точки касания вписанной окружности, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины.
5. Площадь четырехугольника связана с радиусом вписанной в него окружности формулой где p — полупериметр четырехугольника. Так как суммы противолежащих сторон описанного четырехугольника равны, полупериметр равен любой из пар сумм противолежащих сторон. Например, для четырехугольника ABCD p=AD+BC или p=AB+CD и Соответственно, радиус вписанной в четырехугольник окружности равен
|