ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ? ΠΡΠΎ ΠΏΡΠΎΡΡΠΎ!
Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡ Π²ΡΠ΅Π³Π΄Π° Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΈΡΠΊΠ°ΡΡ Π²ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΄Π΅Π»Π°ΡΡ Π΅Π³ΠΎ Π²Π΅ΡΠ½ΡΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎΠΌ. ΠΡΡΠΈ ΠΏΠΎΠΈΡΠΊΠ° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π²ΠΈΠ΄ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡ Π½Π΅Π³ΠΎ ΠΆΠ΅ Π±ΡΠ΄Π΅Ρ Π·Π°Π²ΠΈΡΠ΅ΡΡ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²Π΅ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ, ΠΊΠ°ΠΊ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΌΠΎΠΆΠ΅Ρ Π²Π°ΡΡΠΈΡΠΎΠ²Π°ΡΡΡΡ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
Π§ΡΠΎ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ ΠΏΠΎΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π΅Π³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΌ?
ΠΠ· Π½Π°Π·Π²Π°Π½ΠΈΡ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ½ΠΎ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅Ρ Π΄Π²Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠΌΠΈ ΠΈΠ»ΠΈ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠΌΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΠ½ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π΅ΡΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π‘Π°ΠΌΠΎΠ΅ ΠΏΡΠΎΡΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ.
ΠΠΈΠ΄ΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, Π½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠΎΡΠ½Ρ Π΄Π»Ρ Π½ΠΈΡ Π²ΡΠ΅Π³Π΄Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅. ΠΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π²Π΅ΡΠ½ΡΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎΠΌ. ΠΡΠ²Π°ΡΡ ΡΠΈΡΡΠ°ΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΠΊΠΈΡ ΡΠΈΡΠ΅Π» Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ, ΡΠΎΠ³Π΄Π° Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π Π°Π»Π³Π΅Π±ΡΠ΅ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΉΡΠΈ ΠΊ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ, ΡΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ²ΡΠ΅ΠΌ. Π’ΠΎΠ³Π΄Π° Π³ΠΎΠ²ΠΎΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΎ Π½Π΅ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎ. Π Π² ΠΎΡΠ²Π΅ΡΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ, ΡΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π½Π΅Ρ.
ΠΠΎ ΠΈΠ½ΠΎΠ³Π΄Π° Π±ΡΠ²Π°Π΅Ρ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅. Π’ΠΎ Π΅ΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ. ΠΠ½ΠΈ Π½Π΅ Π΄Π°Π΄ΡΡ Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅. ΠΠΎΡΡΠΎΠΌΡ ΡΠΈΡΠ»Π° Π²ΡΠ΅Π³Π΄Π° Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΡΡ, ΡΡΠΎΠ±Ρ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΠΈΡΡΠ°ΡΠΈΠΈ Ρ Π»ΠΈΡΠ½ΠΈΠΌΠΈ ΠΊΠΎΡΠ½ΡΠΌΠΈ Π² ΠΎΡΠ²Π΅ΡΠ΅. ΠΠ½Π°ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΡΡΠΈΡΠ°ΡΡΡΡ ΡΠ΅ΡΠ΅Π½Π½ΡΠΌ.
Π Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ
ΠΠ½ΠΎ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΎ Π² Π·Π°ΠΏΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π°: Π° * Ρ + Π² = 0. Π Π½Π΅ΠΌ Β«Π°Β» Π²ΡΠ΅Π³Π΄Π° Π½Π΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π΅Π³ΠΎ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠ΅ΡΠΈΡΡ Π² ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅.
ΠΠ· Π½Π΅Π³ΠΎ ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΡΠ²Π΅ΡΠΎΠΌ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄Π½ΠΎ ΡΠΈΡΠ»ΠΎ. Π’ΠΎ Π΅ΡΡΡ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
ΠΠ³ΠΎ ΠΎΠ±ΡΠΈΠΉ Π²ΠΈΠ΄: Π° * Ρ 2 + Π² * Ρ + Ρ = 0. ΠΠ΄Π΅ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ²Π»ΡΡΡΡΡ Π»ΡΠ±ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ, ΠΊΡΠΎΠΌΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ, Β«Π°Β», ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π½ΡΠΌ Π½ΡΠ»Ρ. ΠΠ΅Π΄Ρ ΡΠΎΠ³Π΄Π° ΠΎΠ½ΠΎ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠ΅Π²ΡΠ°ΡΠΈΡΡΡ Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅. ΠΡΠ²Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΡΠΆΠ΅ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΡΡΠΎΠ»Ρ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΡΠΌ, ΠΊΠ°ΠΊ ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅.
Π€ΠΎΡΠΌΡΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Β«ΠΒ» ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π½Π΅ ΡΠ°Π²Π½ΠΎΠ΅ Π½ΡΠ»Ρ, Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ°ΠΊΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΡΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²Π΅ Β«ΠΒ» Π½ΡΠ»Ρ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΡΠΎΡΡΠΎ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½ΡΠ»Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π Π·Π½Π°ΡΠΈΡ, ΠΏΡΠΈΠ±Π°Π²Π»ΡΡΡ ΠΈ Π²ΡΡΠΈΡΠ°ΡΡ Π½ΡΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π½ΠΎΠ»Ρ. ΠΡ ΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»ΠΎ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π±Π΅Π· ΡΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ «Π»:
Ρ = (-Π²) / (2 * Π°).
ΠΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΠ·Π²Π»Π΅ΡΡ ΠΈΠ· Π½Π΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ Π½Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ Π±ΡΠ΄Π΅Ρ.
ΠΠ°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΡΠΎ Π²Π΅ΡΠ½ΠΎ Π΄Π»Ρ ΠΊΡΡΡΠ° ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ ΠΈΠ·ΡΡΠ°ΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ Π²Π²ΠΎΠ΄ΡΡΡΡ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΠΈ Π² ΡΡΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ ΠΎΡΠ²Π΅ΡΠΎΠ² Π±ΡΠ΄Π΅Ρ Π΄Π²Π°.
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π Π΅ΡΡ ΠΈΠ΄Π΅Ρ ΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΈΠ΅ΡΠ°. ΠΠ½Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Π° Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄ΡΡΠ³ΠΎΠΌ Π²ΠΈΠ΄Π΅:
Ρ 2 + Π² * Ρ + Ρ = 0.
Π’ΠΎΠ³Π΄Π° ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠΎΠΌΡ, ΡΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ :
ΠΠ½ΠΎ ΡΠ΅ΡΠ°Π΅ΡΡΡ Π·Π° ΡΡΠ΅Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π²ΡΠ²ΠΎΠ΄ΠΈΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΡΠ½Π΅ΠΉ. Π ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠ΅. Π’Π°ΠΊ Π±ΡΠ΄Π΅Ρ Π½Π°ΠΉΠ΄Π΅Π½ Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΠ΅Π½Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΠΏΠ΅ΡΠ²ΡΠΉ.
Π ΡΡΠΎΠΌΡ Π²Π°ΡΠΈΠ°Π½ΡΡ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΉΡΠΈ ΠΎΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π° Β«Π°Β».
ΠΠ°ΠΊ Π±ΡΡΡ, Π΅ΡΠ»ΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Ρ?
Π Π΅ΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π²ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡΡ Π΄Π»Ρ ΠΎΡΠ²Π΅ΡΠ°. Π ΠΏΠΎΡΠΎΠΌ Π²ΡΠ±ΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠ΅ ΠΌΠ°Π»ΠΎΠ΅. ΠΡΠΎ ΠΈ Π±ΡΠ΄Π΅Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΡΠ°ΠΊΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΡ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°Π½ΠΈΡΡ , ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π±ΠΎΠ»ΡΡΡΡ, ΡΠ΅ΠΌ 2, ΠΈΠ»ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ, ΠΊΠΎΠ³Π΄Π° Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ, ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ «ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ», ΡΡΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ. ΠΠ΅ΡΠ²ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅: ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°ΡΡ Π΅Π³ΠΎ ΡΠ»Π΅Π½Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ: ΠΏΠ΅ΡΠ²ΡΠΉ ΡΠΎ Π²ΡΠΎΡΡΠΌ ΠΈ ΡΠ°ΠΊ Π΄Π°Π»Π΅Π΅. ΠΠΎΡΠΎΠΌ ΠΈΠ· ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠ°ΡΡ Π²ΡΠ½Π΅ΡΡΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΡΠ³ΠΈΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΈΠ· ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ, ΠΏΡΠΈΡΠ°Π²Π½Π΅Π½Π½ΠΎΠΉ ΠΊ Π½ΡΠ»Ρ. ΠΠ½ΠΎ Π±ΠΈΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅. ΠΠ»Ρ Π΅Π³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π²Π²Π΅ΡΡΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅: Ρ 2 = Ρ. Π’ΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΈΡΡΡ ΠΈ ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΡΠΈΠ²ΡΡΠ½ΡΠΉ Π²ΠΈΠ΄ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π = 1. ΠΠ½ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, Π·Π½Π°ΡΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΠ΅ΡΠ²ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΡΠΌ 1, Π²ΡΠΎΡΠΎΠΉ Π±ΡΠ΄Π΅Ρ 0,5. ΠΠΎ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Β«ΡΒ».
Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ
ΠΠ°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΠ΅: Π²ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΡΡ Π½Π° ΡΠΎ, ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π»ΠΈ ΠΊΠΎΡΠ΅Π½Ρ. ΠΠΎΠΆΠ΅Ρ Π±ΡΡΡ, ΠΎΠ½ ΠΏΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ? Π‘ΡΠΎΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΊΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°.
ΠΡΠ»ΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ «Ρ » Π΅Π΄ΠΈΠ½ΠΈΡΡ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ 0 = 0. ΠΡΠΎΡ ΠΊΠΎΡΠ΅Π½Ρ Π²Π΅ΡΠ½ΡΠΉ.
ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ Π½Π΅ Π΄Π°Π» ΠΏΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ. Π’Π°ΠΊΠΎΠ΅ Π±ΡΠ²Π°Π΅Ρ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°. ΠΠΏΠΎΠ»Π½Π΅ ΠΌΠΎΠ³Π»ΠΎ ΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ ΡΠ°ΠΌΠΎΠ΅ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΠ»ΠΎ Π±Ρ ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅. Π’ΠΎΠ³Π΄Π° ΠΏΡΠΈΡΠ»ΠΎΡΡ Π±Ρ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΠΈΠ· ΠΎΡΡΠ°Π²ΡΠΈΡ ΡΡ.
ΠΡΠ²ΠΎΠ΄: Π½Π°Π΄ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ ΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ ΠΈ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡΡ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ β ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ axΒ² + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
Π§ΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π½ΡΠΆΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π§ΡΠΎΠ±Ρ Π΅Π³ΠΎ Π½Π°ΠΉΡΠΈ, Π±Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ: D = bΒ² β 4ac. Π Π²ΠΎΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° axΒ² + bx + c = 0, Π³Π΄Π΅ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² b ΠΈΠ»ΠΈ c ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
Π’Π°ΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΈΡ Π»Π΅Π²ΡΠ΅ ΡΠ°ΡΡΠΈ Π½Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π»ΠΈΠ±ΠΎ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅Π½Π°, Π»ΠΈΠ±ΠΎ ΠΈ ΡΠΎΠ³ΠΎ ΠΈ Π΄ΡΡΠ³ΠΎΠ³ΠΎ. ΠΡΡΡΠ΄Π° ΠΈ ΠΈΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ β Π½Π΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ°ΠΊ ΠΌΡ ΡΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, Π΅ΡΡΡ ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠ»Ρ ΡΠ΅Ρ , ΠΊΡΠΎ Ρ ΠΎΡΠ΅Ρ ΡΠ²ΡΠ·Π°ΡΡ ΡΠ²ΠΎΡ ΠΆΠΈΠ·Π½Ρ Ρ ΡΠΎΡΠ½ΡΠΌΠΈ Π½Π°ΡΠΊΠ°ΠΌΠΈ, Skysmart ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ ΠΊΡΡΡ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ (ΠΏΡΠΎΡΠΈΠ»Ρ).
ΠΠ°ΠΊ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² = 0
ΠΠ°ΡΠ½Π΅ΠΌ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ b ΠΈ c ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ, ΡΠΎ Π΅ΡΡΡ, Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π° axΒ² = 0.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² = 0 ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎ xΒ² = 0. Π’Π°ΠΊΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΌΡ ΡΠ°Π·Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π½Π° Π½Π΅ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ a, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. ΠΠΎΡΠ½Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ xΒ² = 0 ΡΠ²Π»ΡΠ΅ΡΡΡ Π½ΡΠ»Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ 0Β² = 0. ΠΡΡΠ³ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅Ρ, ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² = 0 ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ x = 0.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ β5xΒ² = 0.
ΠΠ°ΠΏΠΈΡΡΠ²Π°ΠΉΡΡ Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠΎΠΊΠΈ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½, Ρ Π½Π°ΡΠΈΠΌΠΈ Π»ΡΡΡΠΈΠΌΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ! ΠΠ»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΠ°!
ΠΠ°ΠΊ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + Ρ = 0
ΠΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π½Π΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π° axΒ² + c = 0, Π² ΠΊΠΎΡΠΎΡΡΡ b = 0, c β 0. ΠΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ Π½ΠΎΡΡΡ Π΄Π²ΡΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΠΊΡΡΡΠΊΠΈ: ΠΊΠΎΠ³Π΄Π° ΠΌΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ ΠΈΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² Π΄ΡΡΠ³ΡΡ, ΠΎΠ½ΠΈ Π½Π°Π΄Π΅Π²Π°Π΅Ρ ΠΊΡΡΡΠΊΡ Π½Π° Π΄ΡΡΠ³ΡΡ ΡΡΠΎΡΠΎΠ½Ρ β ΠΌΠ΅Π½ΡΡΡ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ.
ΠΡΠ΅ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ (ΠΊΡΠΎΠΌΠ΅ Π½ΡΠ»Ρ) β Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π’ΠΎ Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅, ΡΠΎΠ»ΡΠΊΠΎ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠΈΡΡΠ°ΠΌΠΈ.
ΠΠ΅ΡΠΆΠΈΠΌ Π²ΡΠ΅ ΡΡΠΎ Π² Π³ΠΎΠ»ΠΎΠ²Π΅ ΠΈ ΠΊΠΎΠ»Π΄ΡΠ΅ΠΌ Π½Π°Π΄ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ (ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ Β«ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΒ»): axΒ² + c = 0:
Π Π΄Π²ΡΡ ΡΠ»ΠΎΠ²Π°Ρ
ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + c = 0 ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ axΒ² + c = 0, ΠΊΠΎΡΠΎΡΠΎΠ΅:
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠ°ΠΉΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 9xΒ² + 4 = 0.
ΠΡΠ²Π΅Ρ: ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 9xΒ² + 4 = 0 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ°ΠΊ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + bx = 0
ΠΡΡΠ°Π»ΠΎΡΡ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡ ΡΡΠ΅ΡΠΈΠΉ Π²ΠΈΠ΄ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° c = 0.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±Π΅Π· Ρ Π½Π΅ΠΏΡΠΈΠ²ΡΡΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠ²ΡΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ². ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠ² Π°Π»Π³ΠΎΡΠΈΡΠΌ, Π±ΡΠ΄Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΡΠ΅ ΡΠ΅Π»ΠΊΠ°ΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ ΠΈΠ· ΡΡΠ΅Π±Π½ΠΈΠΊΠ°.
ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + bx = 0 ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. Π Π°Π·Π»ΠΎΠΆΠΈΠΌ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π² Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ x.
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΎΡ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠΌΡ x * (ax + b) = 0. Π ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ x = 0 ΠΈ ax + b = 0, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ β Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅, Π΅Π³ΠΎ ΠΊΠΎΡΠ΅Π½Ρ x = βb/a.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ axΒ² + bx = 0 ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ:
ΠΡΠ²Π΅Ρ: Ρ = 0 ΠΈ Ρ = 16.
Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ:
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ (Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, ΡΠΎ Π΅ΡΡΡ 12 = 12.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ» ΠΎΠΏΡΠ°Π²Π΄Π°Π½, ΠΈ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΠ°Π²Π½ΡΠ»Π°ΡΡ ΠΏΡΠ°Π²ΠΎΠΉ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ax 2 + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΡΠΎΠΌ ΠΊΠ»ΡΡΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π§ΡΠΎΠ±Ρ Π² Π½ΠΈΡ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΠΉΡΠ΅ Π΅Π΅ ΠΈ Ρ ΡΠ°Π½ΠΈΡΠ΅ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π 8 ΠΊΠ»Π°ΡΡΠ΅ Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ» Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. Π’ΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax 2 + bx + c = 0:
Π Π²ΠΎΡ ΠΈ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ°Π±Π»ΠΈΡΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΏΠ΅ΡΠ΅Π΄!
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 3.
Π Π°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Ρ ΠΊΠ»Π°ΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ°ΡΡ Π² 8 ΠΊΠ»Π°ΡΡΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ. Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΡΡ ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ.
ΠΡΠ΅ΠΆΠ΄Π΅, ΡΠ΅ΠΌ ΠΈΠ·ΡΡΠ°ΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° ΡΡΠΈ ΠΊΠ»Π°ΡΡΠ°:
Π ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ , Π³Π΄Π΅ ΠΊΠΎΡΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π΅Π½. ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅ΡΡ β Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ. ΠΡΠΊΡΠ΄Π° ΠΎΠ½Π° Π±Π΅ΡΠ΅ΡΡΡ β ΡΠ΅ΠΉΡΠ°Ρ Π½Π΅Π²Π°ΠΆΠ½ΠΎ. ΠΠ°ΠΆΠ½ΠΎ Π΄ΡΡΠ³ΠΎΠ΅: ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π ΠΈΠΌΠ΅Π½Π½ΠΎ:
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ Π½Π° ΠΈΡ Π·Π½Π°ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅ΠΌΡ-ΡΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΠΈΡΠ°ΡΡ. ΠΠ·Π³Π»ΡΠ½ΠΈΡΠ΅ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΡ β ΠΈ ΡΠ°ΠΌΠΈ Π²ΡΠ΅ ΠΏΠΎΠΉΠΌΠ΅ΡΠ΅:
ΠΠ°Π΄Π°ΡΠ°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
a = 1, b = β8, c = 12;
D = (β8) 2 β 4 Β· 1 Β· 12 = 64 β 48 = 16
ΠΡΠ°ΠΊ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°Π·Π±ΠΈΡΠ°Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 5; b = 3; c = 7;
D = 3 2 β 4 Β· 5 Β· 7 = 9 β 140 = β131.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ. ΠΡΡΠ°Π»ΠΎΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 1; b = β6; c = 9;
D = (β6) 2 β 4 Β· 1 Β· 9 = 36 β 36 = 0.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΠΊΠΎΡΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠΏΠΈΡΠ°Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. ΠΠ°, ΡΡΠΎ Π΄ΠΎΠ»Π³ΠΎ, Π΄Π°, ΡΡΠΎ Π½ΡΠ΄Π½ΠΎ β Π·Π°ΡΠΎ Π²Ρ Π½Π΅ ΠΏΠ΅ΡΠ΅ΠΏΡΡΠ°Π΅ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΈ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΠ΅ Π³Π»ΡΠΏΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ. ΠΡΠ±ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΌΠΈ: ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ.
ΠΡΡΠ°ΡΠΈ, Π΅ΡΠ»ΠΈ Β«Π½Π°Π±ΠΈΡΡ ΡΡΠΊΡΒ», ΡΠ΅ΡΠ΅Π· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π²ΡΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π² Π³ΠΎΠ»ΠΎΠ²Π΅. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π»ΡΠ΄Π΅ΠΉ Π½Π°ΡΠΈΠ½Π°ΡΡ Π΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊ Π³Π΄Π΅-ΡΠΎ ΠΏΠΎΡΠ»Π΅ 50-70 ΡΠ΅ΡΠ΅Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ β Π² ΠΎΠ±ΡΠ΅ΠΌ, Π½Π΅ ΡΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΉΠ΄Π΅ΠΌ, ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ D > 0, ΠΊΠΎΡΠ½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x 2 β 2 x β 3 = 0 β a = 1; b = β2; c = β3;
D = (β2) 2 β 4 Β· 1 Β· (β3) = 16.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ :
ΠΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
15 β 2 x β x 2 = 0 β a = β1; b = β2; c = 15;
D = (β2) 2 β 4 Β· (β1) Β· 15 = 64.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½ΠΎΠ²Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ
ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΡΡΠ΅ΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x 2 + 12 x + 36 = 0 β a = 1; b = 12; c = 36;
D = 12 2 β 4 Β· 1 Β· 36 = 0.
D = 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ. ΠΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ²ΡΡ:
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², Π²ΡΠ΅ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ. ΠΡΠ»ΠΈ Π·Π½Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠΌΠ΅ΡΡ ΡΡΠΈΡΠ°ΡΡ, ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ Π±ΡΠ΄Π΅Ρ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ΄Π΅ΡΡ ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ΅ΠΌ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΉ Π²ΡΡΠ΅: ΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΠΎΡΠΌΡΠ»Ρ Π±ΡΠΊΠ²Π°Π»ΡΠ½ΠΎ, ΡΠ°ΡΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ β ΠΈ ΠΎΡΠ΅Π½Ρ ΡΠΊΠΎΡΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ ΠΎΡΠΈΠ±ΠΎΠΊ.
ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄Π°Π½ΠΎ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
ΠΠ΅ΡΠ»ΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . Π’Π°ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄Π°ΠΆΠ΅ Π»Π΅Π³ΡΠ΅, ΡΠ΅ΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅: Π² Π½ΠΈΡ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠΈΡΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠ°ΠΊ, Π²Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅:
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π° ΡΡΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ: b = c = 0. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄ a x 2 = 0. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ: x = 0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ. ΠΡΡΡΡ b = 0, ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax 2 + c = 0. ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π΅Π³ΠΎ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈ (β c / a ) β₯ 0. ΠΡΠ²ΠΎΠ΄:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΈΠ΄Π° ax 2 + bx = 0, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π’ΡΡ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: ΠΊΠΎΡΠ½Π΅ΠΉ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΡ
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΊΠΎΡΠ½ΠΈ. Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
x 2 β 7 x = 0 β x Β· ( x β 7) = 0 β x 1 = 0; x 2 = β(β7)/1 = 7.
5 x 2 + 30 = 0 β 5 x 2 = β30 β x 2 = β6. ΠΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ, Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π΅Π½ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
4 x 2 β 9 = 0 β 4 x 2 = 9 β x 2 = 9/4 β x 1 = 3/2 = 1,5; x 2 = β1,5.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ: ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ, ΠΏΡΠΈΠΌΠ΅ΡΡ
Π ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡ Β«Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉΒ» ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠΈ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ Π²Π°Ρ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ: ΡΡΡΡ ΠΈ Π·Π°ΠΏΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ, ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΡΡ Π΅ΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΈ ΠΏΠΎΠ»Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ, ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠΌ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΡΠ½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ, Π½Ρ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ².
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π΅Π³ΠΎ Π²ΠΈΠ΄Ρ
ΠΠ°ΡΠ°ΡΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΆΠ΅ Π½ΠΎΡΡΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΠΎ ΡΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΅ΡΡΡ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈ Π½Π΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ°Π·Π΄Π΅Π»ΡΡΡ Π½Π° ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈ Π½Π΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅.
ΠΡΠ±ΠΎΠ΅ Π½Π΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π΅ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π΅ Π΅Π³ΠΎ ΡΠ°ΡΡΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ (ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅). ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΆΠ΅ ΠΊΠΎΡΠ½ΠΈ, ΠΊΠ°ΠΊ ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ Π½Π΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΡΠ°ΠΊ ΠΆΠ΅ Π½Π΅ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ Π²ΠΎΠ²ΡΠ΅.
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ Π½Π°ΠΌ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° ΠΎΡ Π½Π΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡ.
ΠΠ°Π΄Π°Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 6 Β· x 2 + 18 Β· x β 7 = 0 . ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΡΠΎΡΠΌΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΠ»Π½ΡΠ΅ ΠΈ Π½Π΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π ΡΠ»ΡΡΠ°Π΅ ΠΆΠ΅, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b ΠΈ c ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ (ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊ ΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ), ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡΠΈΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ.
ΠΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π΅ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ.
ΠΠΎΡΠ°ΡΡΡΠΆΠ΄Π°Π΅ΠΌ, ΠΏΠΎΡΠ΅ΠΌΡ ΡΠΈΠΏΠ°ΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π°Π½Ρ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΊΠΈΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ°Π΄Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²ΡΠ΄Π΅Π»ΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΠΈΠ΄Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ aΒ·x 2 =0
ΠΡΠ°ΡΠΊΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠΎΡΠΌΠ»ΡΠ΅ΡΡΡ ΡΠ°ΠΊ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ a Β· x 2 + c = 0
Π Π΅Π·ΡΠΌΠΈΡΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ²Π΅Ρ: ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 9 Β· x 2 + 7 = 0 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ aΒ·x 2 +bΒ·x=0
ΠΠ°ΠΊΡΠ΅ΠΏΠΈΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ°ΡΠΊΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΡΠ°ΠΊ:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ:
ΠΠ΅Π»ΠΈΡΠ½ΠΈΠΌ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ, ΠΊΠ°ΠΊ Π±ΡΠ»Π° Π²ΡΠ²Π΅Π΄Π΅Π½Π° ΡΠΊΠ°Π·Π°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΈ ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ.
ΠΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ½ΠΎΠ²Ρ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ Π²ΡΠ²ΠΎΠ΄Ρ:
Π’Π°ΠΊ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ Π½Π°ΡΠΈΡ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΠΉ ΡΡΠ°Π»ΠΎ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠ°Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ. ΠΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠ±Π΅ΠΈΡ ΡΠΎΡΠΌΡΠ» Π΄Π°ΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΠΊΠΎΡΠ΅Π½Ρ, ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½, ΠΏΠΎΠΏΡΡΠ°Π²ΡΠΈΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΌΡ ΡΡΠΎΠ»ΠΊΠ½Π΅ΠΌΡΡ Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΡΡΠΎ Π²ΡΠ²Π΅Π΄Π΅Ρ Π½Π°Ρ Π·Π° ΡΠ°ΠΌΠΊΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». ΠΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ΅ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ Π±ΡΠ΄Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ, Π½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° ΠΏΠ°ΡΠ° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ ΡΠ΅ΠΌΠΈ ΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ Π½Π°ΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΠΊΠΎΡΠ½Π΅ΠΉ
Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΡΠ°Π·Ρ Π·Π°Π΄Π΅ΠΉΡΡΠ²ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ, Π½ΠΎ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠ°ΠΊ ΠΏΠΎΡΡΡΠΏΠ°ΡΡ ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ.
Π ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΆΠ΅ ΠΌΠ°ΡΡΠ΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ ΠΏΠΎΠΈΡΠΊ Π½Π΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ , Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π’ΠΎΠ³Π΄Π° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠ½Π°ΡΠ°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΠ΄ΠΎΡΡΠΎΠ²Π΅ΡΠΈΡΡΡΡ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ (Π² ΠΈΠ½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΄Π΅Π»Π°Π΅ΠΌ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ), Π° ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π Π°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 5 Β· y 2 + 6 Β· y + 2 = 0
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΡΠΎΠΈΡ Π·Π°Π΄Π°ΡΠ° ΡΠΊΠ°Π·Π°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ, Π²ΡΠΏΠΎΠ»Π½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ:
Π ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎ Π½Π΅Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ, Π΅ΡΠ»ΠΈ Π² Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΊΠ°ΠΊ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΠ°Π·Ρ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ²Π΅Ρ, ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ Π΄Π»Ρ ΡΠ΅ΡΠ½ΡΡ Π²ΡΠΎΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ²
ΠΡΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ n 2 β a Β· c Π±ΡΠ΄Π΅Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΎ ΠΊΠ°ΠΊ D 1 (ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ D ‘ ). Π’ΠΎΠ³Π΄Π° ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ Π²ΡΠΎΡΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ 2 Β· n ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄:
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ Π±Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈ ΠΏΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π½ΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ Π±Ρ Π±ΠΎΠ»Π΅Π΅ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠΌ.
Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ½ΠΎΠ³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π²ΠΈΠ΄ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΏΡΠΎΡΠ΅ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π’Π°ΠΊΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΡΠΎΡΡΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ. Π’ΠΎΠ³Π΄Π° ΠΎΠ±ΡΡΠ½ΠΎ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π΅ΠΈΡ ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π΅Π³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΡΠ½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ
Π‘Π°ΠΌΡΠΌΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°:
Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠ΄ ΠΏΡΠΎΡΠΈΡ ΡΠ²ΡΠ·Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΡΠ½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π° ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ: