Как охлаждается турбина в автомобиле

Охлаждение турбины дизельного двигателя

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Обладатели турбомоторов часто задаются вопросом касательно необходимости охлаждения турбины перед тем, как заглушить мотор. Подобное охлаждение предполагает несколько минут работы ДВС на холостом ходу. Для получения точного ответа необходимо выяснить, в каких условиях работает турбокомпрессор двигателя. Отработавшие газы несут в себе большое количество полезной энергии, которая получена в результате сгорания топлива в цилиндрах. Перенаправление потока выхлопа на турбинное колесо позволяет реализовать эффективный привод для компрессора. Так удается получить нагнетание воздуха под давлением без отбора мощности у ДВС, что принципиально отличает турбокомпрессор от механического нагнетателя.

Турбонагнетатель является осью, на концах которой присутствуют колеса с лопатками. Выделяют турбинное и компрессорное колесо. Указанные колеса находятся в специальных корпусах. Нагнетатель ставится в выпускном тракте, так как турбинное колесо вращается от контакта с отработавшими газами. Такое вращение позволяет компрессорному колесу вращаться параллельно, засасывать и сжимать воздух для подачи в цилиндры двигателя.

Условия работы турбины

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Температура выхлопных газов дизельного двигателя на выходе перед турбиной составляет в среднем 750-850 градусов по Цельсию. Бензиновые агрегаты имеют еще более разогретый выхлоп. Такие раскаленные газы движутся с большой скоростью и встречаются с турбинным колесом.

Турбокомпрессор отличается высокой производительностью и потребляет достаточно много энергии отработавших газов (в среднем около 25-30 кВт и более). Турбодизель с рабочим объемом 2.0 литра в режиме холостого хода потребляет около 800 литров воздуха за 60 секунд. В режиме максимальной мощности данный показатель доходит до 4 м3. Если учесть, что турбокомпрессор также нагнетает избыток давления до 1 атмосферы, тогда общий объем нагнетаемого устройством воздуха намного больше.

В режиме холостого хода отработавшие газы дизеля имеют температуру около 100 градусов по Цельсию и движутся с небольшой скоростью. Для эффективного вращения колеса турбины и параллельного вращения компрессорного колеса этой энергии достаточно только для того, чтобы турбокомпрессор не препятствовал проходу через него воздуха в объеме, который необходим для поддержания стабильной работы ДВС на холостых оборотах.

Охлаждение и смазка турбокомпрессора

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобилеКолесо турбины выполнено из специальной жаропрочной стали, компрессорное колесо изготавливают из сплавов алюминия. Разные материалы применяются для снижения инерционности турбины. Вал турбины (ось, стержень) закреплен и вращается в плавающих подшипниках скольжения. Также в некоторых турбокомпрессорах могут использоваться шариковые подшипники.

Для смазки подшипников турбокомпрессора реализован подвод моторного масла из системы смазки двигателя. Кроме снижения потерь на трение и препятствования износу трущихся элементов смазка турбины также выполняет важную функцию по отводу тепла из области трения.

В трущихся элементах турбины выделяется большое количество тепла. Сама ось нагнетателя нагревается от контакта с разогретым турбинным колесом, нагрев еще более усиливается в результате высокой частоты вращения и возникающего трения. Во время работы ДВС масло активно подается к подшипникам, охлаждая их. Если мотор сразу заглушить после серьезных нагрузок на двигатель, тогда нагретая ось остановится практически сразу после остановки двигателя. Подача масла к подшипникам сразу прекращается, а сам вал и подшипники усиленно нагреваются от раскаленного колеса турбины. Сильный нагрев приводит к тому, что масло в турбине начинает закоксовываться.

В момент последующего пуска турбомотора закоксовавшееся масло и отложения препятствуют нормальному доступу свежей смазки в первые секунды после запуска. Вполне очевидно, что присутствует сильный износ подшипников турбины. Для решения этой проблемы рекомендуется не сразу глушить мотор после езды, а дать силовому агрегату поработать на холостых оборотах от 2-х до 5-и минут. Температура выхлопа на холостом ходу упадет до 100 градусов Цельсия, интенсивность вращения турбины снизится. Этого времени будет достаточно для того, чтобы колесо турбины и ось успели охладиться до такой температуры, когда коксования масла не произойдет после остановки ДВС. Отсутствие кокса значительно продлевает ресурс турбины дизельного или бензинового двигателя.

Водитель останавливает машину, вынимает ключ из замка зажигания и может сразу покинуть автомобиль. Двигатель продолжает работать еще несколько минут, после чего будет заглушен автоматически. Единственным неудобством можно считать то, что приходится постоянно пользоваться стояночным тормозом и следить за его исправностью, так как сразу поставить автомобиль на передачу при наличии МКПП нельзя.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Почему масло попадает в интеркулер. Локализация и устранение возможных неисправностей своими руками. Как самому промыть и очистить инетркулер от масла.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Выбор механического нагнетателя или турбокомпрессора. Конструкция, основные преимущества и недостатки решений, установка на атмосферный тюнинговый мотор.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Возможность установки турбокомпрессора на двигатель с карбюратором. Основные преимущества и недостатки турбонаддува на карбюраторном авто.

Источник

О турбинах подробно

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Приветствую Всех кто решил заглянуть в мою новую запись посвященную турбинам, и так пока в виду некоторых обстоятельств я не могу заняться своими проектами по машине, я продолжу Вам рассказывать о технически интересных узлах в доступной (я надеюсь) форме, и так изучив уже клапан турбины, тыц сюда тем кто пропустил урок—> www.drive2.ru/l/4836934/ теперь поговорим и о самой турбине.

И так я расскажу Вам о турбинах в целом, ну и так как большинство моих подписчиков ( а это между прочим 74 человека на минуточку ) владеют ecoboost-ами рассмотрим и их турбину отдельно.

Что такое турбина и для чего она нужна?

Турбина – устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше…

Принцип работы турбокомпрессора

Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

На картинке ниже показана циркуляция газов:

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Устройство турбины
Общие устройство турбины в целом похожи.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Турбина состоит из двух улиток – улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

Вестгейт, также как и блоуофф, является средством управления наддувом, только со стороны выхлопа. Некоторые коммерческие дизельные системы турбонаддува вовсе обходятся без оного (т.н. система свободно плавающего турбонагнетателя). Однако, использование турбонаддува на бензиновых двигателях требует применения этого компонента.

Существуют две разновидности вестгейтов — внутренний и внешний. И тот и другой обеспечивают обход выхлопных газов мимо колеса турбины. Обход газов колеса, как вы уже понимаете, уменьшает мощность турбокомпрессора, позволяя турбине соответствовать мощности, требуемой для данного уровня наддува. Аналогично блоуоффам, вестгейты используют в своей конструкции силу пружины, для регулировки потока, проходящего в обход турбины.

Внутренние вестгейты встроены в корпус турбины и состоят из клапана «хлопушки», тяги, наконечника, и пневматического привода (актюатора).

Очень важно подсоединить актюатор исключительно к давлению наддува, т.к. механизм не работает с вакуумом и не может относиться к впускному коллектору.

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Устройство турбины на ECOBOOST:

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

Как охлаждается турбина в автомобиле. Смотреть фото Как охлаждается турбина в автомобиле. Смотреть картинку Как охлаждается турбина в автомобиле. Картинка про Как охлаждается турбина в автомобиле. Фото Как охлаждается турбина в автомобиле

1) Внутренняя труба
2) Внешняя оболочка
3) Приводной механизм регулятора давления наддува
4) Клапан управления турбонагнетателя
5) Впуск воды
6) Впуск масла
7) Кожух
8) Перепускной клапан
9) Канал регулятора давления наддува
10) Встроенный корпус турбины

Турбина так-же идет в сборе с коллектором, как единое целое.

Система охлаждения турбин

Не одна современная турбина не обходится без охлаждения как воздуха в нее поступающего так и самой себя, сама турбина охлаждается маслом и антифризом, есть турбины с чисто масленым охлаждением но мы будем рассматривать наш вариант а это масло и антифриз, при охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится – тем меньше эффективность наддува. С этим явлением призван бороться интеркулер – промежуточный охладитель воздуха. Кстати для наших турбин наиболее актуальны интеркулеры с технологией tube fin так как наши турбины довольно малы, и эта технология значительно снижает потери.

Загрязненное масло
Загрязненное масло двигателя ведет к повреждению турбокомпрессора в форме сильного коксования в каналах подачи масла, а также некачественной работы фильтров. Загрязнения крупными частицами приводит к появлению глубоких царапин на подшипнике скольжения. Для предотвращения повреждений должно быть гарантировано применение масла и фильтров высокого качества.

Недостаток масла
Длительный процесс не поступления масла (от 8 до 10 сек.) Ведет к тому, что на подшипнике скольжения и опорных шейках ротора турбокомпрессора образуются как следы износа, так и характерные следы перегрева на поверхностях.
Недостаточное количество масла может объясняться следующими причинами:
обрыв маслопроводов;
недостаточный уровень масла в поддоне;
выход из строя масляного насоса;
неисправности системы смазки двигателя;
доступ воздуха в систему смазки.

Мягкий посторонний предмет в воздушном всасывающем тракте компрессора.
Попадание в турбину мягких посторонних предметов, таких как куски бумаги, резины, ткани или ветоши приводят к деформации крыльчатки (загиб, накат) и откалывания от них кусков металла.

Твердый посторонний предмет в выхлопном тракте турбины.
Посторонние предметы, обломки деталей двигателя (клапанов, поршневых колец), что попадают в турбину, приводят к характерному повреждению крыльчатки. Даже небольшие кусочки ржавчины могут вызвать серьезное разрушение вследствие высокой скорости вращения ротора.

Затрудненный доступ масла
Кратковременный, повторяющийся процесс прерывания доступа масла (от 4 до 5 сек.) Ведет к сильному износу на поверхностях подшипников скольжения турбокомпрессора. Это происходит тогда, когда двигатель не смазывается и не прокручивается после следующих операций:
-Замена турбокомпрессора без предварительного заполнения системы смазки;
-Замена масла, фильтра;
-Длительный простой;
-Непрофессиональный запуск двигателя, особенно в холодное время года;
-Пониженное давление масла вследствие неисправности системы смазки;
-Загрязнения масла топливом и частицами герметика;
-Эксплуатация турбокомпрессора с изношенным двигателем.

Нужно отметить что многие современные моторы позволяют глушить мотор сразу, на многих ставят даже принудительное охлаждение турбины после выключения мотора, но в случае с нашими моторами я бы не пожалел одну две минуты времени.

Источник

Система охлаждения турбонаддува

СОДЕРЖАНИЕ

История наддува так же стара, как и история самих двигателей внутреннего сгорания. Известно, что оба «прародителя» современных ДВС, и Готлиб Даймлер, и Рудольф Дизель, отчетливо представляли, что предварительное сжатие воздуха, поступающего в цилиндры, позволяет получить прибавку в мощности. Оба еще в конце 19-го века предпринимали попытки применить наддув в конструкции своих двигателей и оба потерпели неудачу. Что касается эффективной мощности, она действительно возрастала, но на КПД «первобытных» бензиновых и дизельных моторов наддув сказывался отрицательно. Это сейчас понятно, что виноват был не сам принцип наддува, а его реализация. Тогда же результаты экспериментов дали основание сделать отрицательный вывод о пользе применения наддува. Дизель был наиболее категоричен и назвал воздействие предварительной компрессии на работу двигателя чрезвычайно вредным.

Неудачи первых экспериментов надолго отодвинули идею предварительного наддува. Робкие попытки вернуться к ней предпринимались еще до начала Первой мировой войны. Бензиновые двигатели с наддувом изредка появлялись на гоночных автомобилях и тепловозах. Война активизировала разработки в этой области, и авиационные моторы с наддувом помогали самолетам компенсировать потерю мощности из-за уменьшения плотности воздуха при полетах на больших высотах. Усилиями немецкой фирмы MAN в середине 20-х годов были разработаны первые дизельные двигатели с наддувом. Применялись они в основном на судах, в том числе, подводных лодках, и локомотивах.

Причина прироста мощности и крутящего момента турбомоторов – резкое увеличение среднего эффективного давления в цилиндре.

История свидетельствует, что в 1905 году выпускник Швейцарского технического университета Альфред Бюхи получил от Федерального патентного ведомства США свой первый патент. Патент касался принципа предварительного сжатия рабочей среды поршневой машины за счет частичного использования энергии отработавших газов. Впоследствии Бюхи запатентовал еще несколько изобретений, в том числе, конструкцию устройства, объединявшего на одном валу крыльчатки компрессора и турбины, работающей на выхлопных газах двигателя. Так родилась идея газового турбонагнетателя или турбокомпрессора.

«Инкубационный период» этого изобретения длился очень долго. Первое практическое применение турбонаддува на транспортных двигателях состоялось лишь в 1925 году. Турбонагнетатели прошли примерно такой же путь, как и компрессоры. Вначале они применялись на судовых двигателях, в конце 30-х – на моторах грузовиков. Дебют турбокомпрессоров на серийных легковых автомобилях состоялся гораздо позже, лишь в начале 60-х, когда концерн General Motors представил на рынок две модели автомобилей с турбонагнетателями: Chevrolet Corvair Monza и Oldsmobile Jetfire. Как оказалось, их премьера было несколько преждевременной. Большой расход топлива, невысокий крутящий момент и низкая надежность турбомоторов привели к тому, что через год эти модели были сняты с производства, дискредитировав идею турбонаддува.

Несмотря на кажущуюся простоту самой идеи и конструкции газового турбонагнетателя, создание работоспособных агрегатов турбонаддува вкупе с устройствами регулирования – задача непростая. Ее решение требует глубоких теоретических и прикладных исследований, а также применения высокотехнологичных процессов в производстве. Представьте, вал турбокомпрессора вращается с частотой 200 000 мин-1 и даже больше. То есть, пока вы делаете один вдох, турбонагнетатель совершает более 3 000 оборотов. При этом температура крыльчатки турбины, взаимодействующей с выхлопными газами, «зашкаливает» за тысячу градусов, в то время как с другой стороны небольшого вала, в зоне крыльчатки компрессора она раз в пять меньше. Понятно, что даже обеспечение работоспособности такого устройства – проблема, не говоря уже о ресурсе в 200-300 тысяч километров пробега автомобиля

И все же проблемы применения турбонаддува в двигателях легковых автомобилей постепенно решались. Достаточно компактное устройство, к тому же утилизирующее энергию выхлопных газов, обеспечивало немалые преимущества: небывалый рост удельной мощности и крутящего момента, которые зачастую было невозможно достичь другими способами. Именно эти факторы имели первостепенное значение в середине прошлого века. Как многие другие технические новации, турбонаддув прокладывал себе дорогу в «серию» через автоспорт. Гонки «Формулы-1», соревнования в Индианаполисе, на которых апробировалась турботехника, стали важным этапом ее опытной отработки и доказали, что расчет на турбонаддув оправдан.

Серийный выпуск турбодизелей первой освоила фирма Mercedes-Benz в 1978 году. Позже этим направлением активно занялись французские моторостроители, Peugeot и Citroen. Таким образом, к началу 80-х годов в линейке практически каждого автопроизводителя легковых автомобилей присутствовали одна или несколько моделей с турбодвигателем. В то же время, механические нагнетатели сдали свои позиции, хотя говорить о бесперспективности их применения на небольших ДВС пока преждевременно.

Что касается собственно турботехники, ее разработка и производство выделились в отдельную отрасль промышленности. Дело это не простое и требует особых знаний и технологий. Занимаются им отнюдь не автоконцерны, а ряд специализированных фирм. Некоторые из них имеют в этой области опыт, исчисляющийся многими десятилетиями. Абсолютный лидер в деле разработки и производства турбокомпрессоров – известная американская фирма Garrett. Ставшая в 1999 году частью международного концерна Honeywell, она получила новое название Honeywell Turbo Technologies, оставив прежнее имя в качестве торговой марки. Второе место по объемам производства занимает немецкая компания Borg Warner Turbosystems, которая после слияния с фирмами KKK, Schwitzer и Hitachi также владеет и этими брендами.

Английская компания Holset специализируется на агрегатах турбонаддува для коммерческих автомобилей. Из производителей автомобилей лишь концерн Mitsubishi имеет в своей структуре предприятие по производству турбокомпрессоров. Фирма MHI полностью обеспечивает турбокомпрессорами потребности Mitsubishi, а также поставляет несколько моделей для моторов Volvo и BMW. Даже такой «монстр» как Toyota c 2001 года практически отказалась от изготовления турбокомпрессоров и перешла на использование изделий Garrett. Оставшаяся часть турбо-рынка закрывается мелкими фирмами, а также продукцией, выпускающейся известными производителями для крупных клиентов под другими торговыми марками.

Анализ задания на дипломный проект

Турбонаддув — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля.

Принцип работы турбокомпрессора

Принцип работы турбонаддува несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

Турбонаддув состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

В процессе работы турбокомпрессор подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

Частота вращения вала турбокомпрессора достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так и системой охлаждения подшипниковой части турбины.

Система охлаждения турбонаддува

Система охлаждения турбонаддува двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.
Охлаждение маслом.
Преимущества:

1. Более простая конструкция

2. Меньшая стоимость изготовления самой турбины

1. Меньшая эффективность охлаждения по сравнению с комплексной системой

2. Более требовательна к качеству масла и к его более частой смене

3. Более требовательна к контролю за температурным режимом масла

Изначально, большинство серийных двигателей с турбонаддувом оснащались турбинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

Комплексное охлаждение маслом и антифризом
Преимущества:

1. Большая эффективность охлаждения

1. Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

При охлаждении турбокомпрессора маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

В своем дипломном проекте я хочу показать возможность установки турбонаддува на двигатель ВАЗ-21126 ( Приора). Тем самым испытать теоретическую возможность установки этого агрегата на данный двигатель и будет ли это целесообразно.

1 Расчетно – конструкторская часть

1.1 Описание конструкции и характеристика прототипа двигателя

Двигатель Лада Приора устанавливается на авто ВАЗ 2170 и его модификации. В цилиндропоршневом блоке двигателя 21126 стенки цилиндров хорошо обработаны методом хонингования для получения внутренних поверхностей улучшенного качества. Чугунный коленчатый вал 11183 отличается увеличенным радиусом кривошипа. Оригинальный шкив зубчатой конструкции индексирован специальным номером 21126.

Полукруглый профиль зубцов обеспечивает зацепление с фирменным ремнем, имеющим 137 зубцов такого же профиля, газораспределительного механизма. Срок использования ремня зубчатого фирмы Gates рассчитан на 200 тыс. км.

Шатунно-поршневая группа разработана фирмой Federal Mogul. Инженерами создана конструкция, весом на 30% меньшим, чем у модели 2110. Поршневые кольца Federal Mogul имеют меньшую толщину. С целью снижения потерь от трения шатун утончен, и его головка не касается коленчатого вала. Для установки крышки шатуна используются оригинальные болты одноразового использования. Ширина новых шатунных вкладышей равна 17,2 мм.

Более тонкие кольца поршневые, компрессионное верхнее и компрессионное нижнее, имеют высоту, равную 1,2 и 1,5 мм соответственно. Маслосъемное кольцо выполнено высотой 2 мм.

Чугунная головка блока цилиндров 21126 — 1003011, рассчитанная на Приору 16 клапанов, имеет площадку, подходящую под новый механизм натяжения ГРМ ремня. Головка отлита заодно со стаканами колодцев под свечи.

Прокладка ГБЦ имеет два металлических слоя, ее общая толщина равна 0,45 мм. Конструкцией детали предусмотрены специальные отверстия для цилиндров. Диаметр каждого отверстия равен 82мм.

Каталитический нейтрализатор — обеспечивает выполнение требований по нормам токсичности Евро 3 и Евро 4

В водяном насосе произведены изменения для продления срока эксплуатации — использование подшипников и сальников другого вида.

Система зажигания и топливная система силового агрегата не отличаются от ВАЗ 11194. Свечи оборудованы индивидуальными катушками зажигания. Топливные рампы, изготовленные из нержавейки, подходят для установки фирменных форсунок SIEMENS или BOSCH, подающих горючее в соответствии с определенными фазами.

Универсальная схема смазочной системы состоит из следующих составляющих:

1. Насос масляный, состоящий из шестерен.

2. Картер стальной под блоком цилиндров.

4. Датчик масляного давления.

Дата добавления: 2018-08-06 ; просмотров: 1175 ; Мы поможем в написании вашей работы!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *