ΠΠ°ΠΊ ΠΏΠΎΠ½ΡΡΡ ΡΡΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ 0
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡ ΡΠΆΠ΅ ΡΠ°Π·ΠΎΠ±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π½Π°ΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 β 4ac Β», ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ, ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΡΠΊΠ²ΠΎΠΉ Β« D Β».
ΠΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ, ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π΅ΡΡΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½ Β«ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΒ» ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΠΎΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ discriminantis, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ».
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΠΊΠ° Β« D Β» (Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ΅ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ.
I ΡΠ»ΡΡΠ°ΠΉ
D > 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ)
x1;2 =
βb Β± β D |
2a |
x1;2 =
β5 Β± β 81 |
2 Β· 2 |
x1;2 =
β5 Β± 9 |
4 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 1 | x2 = β3
| ||||
x1 = 1 | x2 = β3
|
ΠΡΠ²Π΅Ρ: x1 = 1; x2 = β3
1 |
2 |
II ΡΠ»ΡΡΠ°ΠΉ
D = 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β8) 2 β 4 Β· 16 Β· 1
D = 64 β 64
D = 0
x1;2 =
βb Β± β D |
2a |
x1;2 =
β (β8) Β± β 0 |
32 |
x1;2 =
8 Β± 0 |
32 |
x =
8 |
32 |
x =
1 |
4 |
ΠΡΠ²Π΅Ρ: x =
1 |
4 |
III ΡΠ»ΡΡΠ°ΠΉ
D
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β6) 2 β 4 Β· 9 Β· 2
D = 36 β 72
D = β36
D
x1;2 =
βb Β± β D |
2a |
x1;2 =
β (β6) Β± β β36 |
32 |
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π°Π·ΡΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(b^<2>-4ac\), Π³Π΄Π΅ \(a, b\) ΠΈ \(c\) β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π°.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(3x^2+2x-7\), Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \(2^2-4\cdot3\cdot(-7)=4+84=88\). Π Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(x^2-5x+11\), ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \((-5)^2-4\cdot1\cdot11=25-44=-19\).
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
— Π΅ΡΠ»ΠΈ \(D\) ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½ β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½Π΅Π³ΠΎ β ΡΡΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π° Π·Π½Π°ΡΠΈΡ \(x_<1>\) ΠΈ \(x_<2>\) Π±ΡΠ΄ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½Ρ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π²Π΅Π΄Ρ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ \(\sqrt
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+2x-3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ ΠΈΠ·-Π·Π° ΡΠ°Π·Π½ΡΡ
Π·Π½Π°ΠΊΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ \(\sqrt
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ
Π ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ, Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ? ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ.
Π’ΠΎ Π΅ΡΡΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π½ΡΠ»Ρ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2-4x+4=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π½Π΅Ρ ΡΠΌΡΡΠ»Π° ΠΏΠΈΡΠ°ΡΡ ΠΈΡ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΡΡΠΈ β Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΠ·Π²Π»Π΅ΡΡ Π½Π΅Π»ΡΠ·Ρ (Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° β Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌ), Π° Π·Π½Π°ΡΠΈΡ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+x+3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ±Π° ΠΊΠΎΡΠ½Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(\sqrt<-11>\), Π·Π½Π°ΡΠΈΡ, ΠΈ ΡΠ°ΠΌΠΈ Π½Π΅ Π²ΡΡΠΈΡΠ»ΠΈΠΌΡ
Π’ΠΎ Π΅ΡΡΡ, ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ β Π½Π΅ ΡΡΡ-ΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Π°Ρ ΠΏΡΠΈΠ΄ΡΠΌΠΊΠ°. ΠΡΠΎ Π½Π΅ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Β«Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅ ΡΠ°ΠΊ Π½Π°ΠΏΠΈΡΠ°Π½ΠΎΒ», Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ°Π²Π΄Π°: Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΡΠΎΠ± ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π΅Π³ΠΎ Π²ΠΌΠ΅ΡΡΠΎ ΠΈΠΊΡΠ° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(x^2+x+3\) ΠΏΠΎΠ»ΡΡΠΈΠ»ΡΡ Π½ΠΎΠ»Ρ.
ΠΠ°ΡΡ Π°ΠΊ: Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π²Ρ ΡΠ΅ΡΠ°Π΅ΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠΈΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅ΡΠ΅ ΡΠ°Π·, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ Π½Π΅ ΡΠ°ΡΡΠ°Ρ ΡΠΈΡΡΠ°ΡΠΈΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΡ, Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ°Ρ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: Π½Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ β Π½Π΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΈΠΊΡ!
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΡΠΎΡΠΌΡΠ»Π°, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ Π½ΡΠ»ΡΠΌ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, ΠΊΠ°ΠΊ ΠΈΡΠΊΠ°ΡΡ Π΅Π³ΠΎ ΠΊΠΎΡΠ½ΠΈ
ΠΠ°ΠΊ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ:
ΠΠ°ΡΠΈΠ°Π½ΡΡ ΡΠ°ΡΡΡΡΠΎΠ² Π΄Π»Ρ Π·Π°ΠΊΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° Π² Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ
ΠΡΠ° Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, Π½ΠΎ ΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ. ΠΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° ΡΠ°ΡΡΡΡΠ° Π΄Π»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°ΠΊΠΎΠ²Π°:
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΊ Π½ΡΠ»Ρ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ:
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΡΠΎΡΠ°ΡΡΡΡ. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ. ΠΠΎΠ³Π΄Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π½ΡΠ»Π΅Π²ΠΎΠΉ, ΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ Π΄Π²Π° Π²Π°ΡΠΈΠ°Π½ΡΠ°:
ΠΡΠ»ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½ Π½ΡΠ»Π΅Π²ΠΎΠΉ, ΡΠΎ ΠΊΠΎΡΠ½ΠΈ Π±ΡΠ΄ΡΡ
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠ°ΡΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ, ΡΠΏΡΠΎΡΠ°ΡΡΠΈΠ΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ i * w ^ 2 + j * w + k = 0 ΡΠ΄Π°ΡΡΡΡ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΏΡΡΡΠΌ Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π° «i». Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ΄Π΅Ρ: w ^ 2 + j1 * w + k1 = 0, Π³Π΄Π΅ j1 ΡΠ°Π²Π½ΠΎ j / i ΠΈ k1 ΡΠ°Π²Π½ΠΎ k / i.
Π§ΡΡΠ½ΡΠΉ Π²ΡΠΎΡΠΎΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ
ΠΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠΉ ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ i * w ^ 3 + j * w ^ 2 + k * w + m = 0.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ (Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, ΡΠΎ Π΅ΡΡΡ 12 = 12.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ» ΠΎΠΏΡΠ°Π²Π΄Π°Π½, ΠΈ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΠ°Π²Π½ΡΠ»Π°ΡΡ ΠΏΡΠ°Π²ΠΎΠΉ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ax 2 + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΡΠΎΠΌ ΠΊΠ»ΡΡΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π§ΡΠΎΠ±Ρ Π² Π½ΠΈΡ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΠΉΡΠ΅ Π΅Π΅ ΠΈ Ρ ΡΠ°Π½ΠΈΡΠ΅ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π 8 ΠΊΠ»Π°ΡΡΠ΅ Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ» Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. Π’ΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax 2 + bx + c = 0:
Π Π²ΠΎΡ ΠΈ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ°Π±Π»ΠΈΡΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΏΠ΅ΡΠ΅Π΄!
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 3.
Π Π°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Ρ ΠΊΠ»Π°ΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ°ΡΡ Π² 8 ΠΊΠ»Π°ΡΡΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ. Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΡΡ ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ.
ΠΡΠ΅ΠΆΠ΄Π΅, ΡΠ΅ΠΌ ΠΈΠ·ΡΡΠ°ΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° ΡΡΠΈ ΠΊΠ»Π°ΡΡΠ°:
Π ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ , Π³Π΄Π΅ ΠΊΠΎΡΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π΅Π½. ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅ΡΡ β Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ. ΠΡΠΊΡΠ΄Π° ΠΎΠ½Π° Π±Π΅ΡΠ΅ΡΡΡ β ΡΠ΅ΠΉΡΠ°Ρ Π½Π΅Π²Π°ΠΆΠ½ΠΎ. ΠΠ°ΠΆΠ½ΠΎ Π΄ΡΡΠ³ΠΎΠ΅: ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π ΠΈΠΌΠ΅Π½Π½ΠΎ:
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ Π½Π° ΠΈΡ Π·Π½Π°ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅ΠΌΡ-ΡΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΠΈΡΠ°ΡΡ. ΠΠ·Π³Π»ΡΠ½ΠΈΡΠ΅ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΡ β ΠΈ ΡΠ°ΠΌΠΈ Π²ΡΠ΅ ΠΏΠΎΠΉΠΌΠ΅ΡΠ΅:
ΠΠ°Π΄Π°ΡΠ°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
a = 1, b = β8, c = 12;
D = (β8) 2 β 4 Β· 1 Β· 12 = 64 β 48 = 16
ΠΡΠ°ΠΊ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°Π·Π±ΠΈΡΠ°Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 5; b = 3; c = 7;
D = 3 2 β 4 Β· 5 Β· 7 = 9 β 140 = β131.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ. ΠΡΡΠ°Π»ΠΎΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 1; b = β6; c = 9;
D = (β6) 2 β 4 Β· 1 Β· 9 = 36 β 36 = 0.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΠΊΠΎΡΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠΏΠΈΡΠ°Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. ΠΠ°, ΡΡΠΎ Π΄ΠΎΠ»Π³ΠΎ, Π΄Π°, ΡΡΠΎ Π½ΡΠ΄Π½ΠΎ β Π·Π°ΡΠΎ Π²Ρ Π½Π΅ ΠΏΠ΅ΡΠ΅ΠΏΡΡΠ°Π΅ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΈ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΠ΅ Π³Π»ΡΠΏΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ. ΠΡΠ±ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΌΠΈ: ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ.
ΠΡΡΠ°ΡΠΈ, Π΅ΡΠ»ΠΈ Β«Π½Π°Π±ΠΈΡΡ ΡΡΠΊΡΒ», ΡΠ΅ΡΠ΅Π· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π²ΡΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π² Π³ΠΎΠ»ΠΎΠ²Π΅. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π»ΡΠ΄Π΅ΠΉ Π½Π°ΡΠΈΠ½Π°ΡΡ Π΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊ Π³Π΄Π΅-ΡΠΎ ΠΏΠΎΡΠ»Π΅ 50-70 ΡΠ΅ΡΠ΅Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ β Π² ΠΎΠ±ΡΠ΅ΠΌ, Π½Π΅ ΡΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΉΠ΄Π΅ΠΌ, ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ D > 0, ΠΊΠΎΡΠ½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x 2 β 2 x β 3 = 0 β a = 1; b = β2; c = β3;
D = (β2) 2 β 4 Β· 1 Β· (β3) = 16.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ :
ΠΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
15 β 2 x β x 2 = 0 β a = β1; b = β2; c = 15;
D = (β2) 2 β 4 Β· (β1) Β· 15 = 64.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½ΠΎΠ²Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ
ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΡΡΠ΅ΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x 2 + 12 x + 36 = 0 β a = 1; b = 12; c = 36;
D = 12 2 β 4 Β· 1 Β· 36 = 0.
D = 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ. ΠΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ²ΡΡ:
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², Π²ΡΠ΅ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ. ΠΡΠ»ΠΈ Π·Π½Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠΌΠ΅ΡΡ ΡΡΠΈΡΠ°ΡΡ, ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ Π±ΡΠ΄Π΅Ρ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ΄Π΅ΡΡ ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ΅ΠΌ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΉ Π²ΡΡΠ΅: ΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΠΎΡΠΌΡΠ»Ρ Π±ΡΠΊΠ²Π°Π»ΡΠ½ΠΎ, ΡΠ°ΡΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ β ΠΈ ΠΎΡΠ΅Π½Ρ ΡΠΊΠΎΡΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ ΠΎΡΠΈΠ±ΠΎΠΊ.
ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄Π°Π½ΠΎ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
ΠΠ΅ΡΠ»ΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . Π’Π°ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄Π°ΠΆΠ΅ Π»Π΅Π³ΡΠ΅, ΡΠ΅ΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅: Π² Π½ΠΈΡ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠΈΡΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠ°ΠΊ, Π²Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅:
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π° ΡΡΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ: b = c = 0. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄ a x 2 = 0. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ: x = 0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ. ΠΡΡΡΡ b = 0, ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax 2 + c = 0. ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π΅Π³ΠΎ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈ (β c / a ) β₯ 0. ΠΡΠ²ΠΎΠ΄:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΈΠ΄Π° ax 2 + bx = 0, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π’ΡΡ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: ΠΊΠΎΡΠ½Π΅ΠΉ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΡ
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΊΠΎΡΠ½ΠΈ. Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
x 2 β 7 x = 0 β x Β· ( x β 7) = 0 β x 1 = 0; x 2 = β(β7)/1 = 7.
5 x 2 + 30 = 0 β 5 x 2 = β30 β x 2 = β6. ΠΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ, Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π΅Π½ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
4 x 2 β 9 = 0 β 4 x 2 = 9 β x 2 = 9/4 β x 1 = 3/2 = 1,5; x 2 = β1,5.