Кавитация это гидравлика что такое
Кавитация в насосах: что за явление и как с ним бороться
При определенных условиях в насосе возникает явление кавитации. Оно негативно влияет на работу аппарата, неизбежно приводит к его повреждению. Некоторые меры способны минимизировать кавитационный эффект.
Физически кавитацию можно объяснить тем, что в любой жидкости неизбежно содержится определенный объем растворенного газа.
Кавитация также обусловлена гидродинамическими характеристиками рабочих органов насосного аппарата, например линии тока могут отклоняться от стандартных траекторий, увеличивается частота вращения либо сжатия потока. При этом явление может возникнуть и на движущихся, и на неподвижных зонах проточной части оборудования. Кавитация является очень распространенной причиной поломки оборудования (она занимает второе место, на первом же находится неправильная центровка вала).
Причины появления кавитационного эффекта
Более подробно причину кавитации можно объяснить следующим образом. Гидравлический насос имеет сторону всасывания рабочей среды и сторону нагнетания. Когда на первой из них давление падает до давления насыщения паров (может стать гораздо меньше атмосферного), в жидкости образуются пузырьки пара, она начинает «кипеть». Чем ниже показатель давления, тем, соответственно, пузырьков будет больше.
После этого жидкость поступает в зону нагнетания. Давление там уже будет выше атмосферного. В результате пузырьки «схлопываются», образуя ударную волну. Порой при таком местном гидроударе давление превышает 10 тысяч бар. Кинетическая энергия частиц трансформируется в энергию упругой деформации. Насосные агрегаты не рассчитаны на подобные нагрузки, поэтому неизбежно возникают повреждения.
Выделяют 3 кавитационные стадии:
1) Начальная. На данном этапе кавитационная область еще отсутствует;
2) Развитая. Имеются кавитационные пустоты (каверны);
3) Суперкавитация. Обтекаемый элемент полностью располагается в области кавитационной каверны.
Последствия кавитации в насосном оборудовании
Кавитация очень сильно влияет на исправность работы насосного устройства. Данное явление недопустимо даже в небольших масштабах в силу своего разрушительного влияния. Так, при схлопывании кавитационных пустот возникает шум (или характерное потрескивание в области входа в рабочее колесо), а также вибрация, причем чем больше габариты насоса, тем эти показатели будут больше.
Снижение характеристик насосного агрегата при развитой степени кавитации будет отличаться у насосов различной степени быстроходности. Причем параметры будут резко уменьшаться в случае низкой быстроходности и постепенно — при высокой. Если же кавитационная область полностью занимает сечение канала, подача насосного аппарата прекращается.
При продолжительной работе аппарата в условиях кавитации разрушаются материалы, из которых он изготовлен. Это явление называется питтинг, или точечное разрушение. Оно случается даже на начальном этапе кавитации.
Нужно различать разрушение по причине кавитации от коррозийного и эрозийного разрушения. Например, коррозия — последствие химического либо электролитического воздействия рабочей среды на металл, из которого изготовлен насос. Эрозия же случается из-за отрыва металлических частиц твердыми веществами, которые содержатся в перекачиваемой жидкости (к примеру, песок).
Как минимизировать данное явление
Явление кавитации в насосном оборудовании возможно предупредить. С этой целью разработаны специальные формулы. Согласно им кавитация менее вероятна, когда увеличивается высота подпора (то есть снижается высота всасывания), возрастает давление на поверхности жидкой среды.
Помимо этого, каждый агрегат имеет свой кавитационный запас. Также вероятность появления кавитации возрастает вместе с плотностью жидкости.
Важно знать, что кавитацию увеличивают потери напора на всасывающей линии. Поэтому, чтобы минимизировать явление, нужно обеспечивать «сплошной поток».
Интересно, что на сегодняшний день не существует материалов, абсолютно стойких к кавитационному эффекту. Все они из-за него разрушаются, только одни медленнее, а другие быстрее. Есть материалы более стойкие, одновременно с механической прочностью они обладают химической устойчивостью. Примером является бронза. А вот углеродистая сталь, чугун очень подвержены кавитационному разрушению (у чугуна это происходит за счет быстрого разрушения включений графита в его составе). Использование кавитационно стойких материалов обеспечивает непродолжительную работу насосного устройства при частичной кавитации. Это целесообразно, например, если аппарат испытывает кратковременную перегрузку.
Чтобы уменьшить физические последствия кавитации, производители применяют разного рода твердые напыления, а также закалку самых уязвимых элементов насоса. Однако это практикуется не так часто, поскольку данные методы не очень эффективные и при этом дорогостоящие.
Что такое кавитация?
Что собой представляет кавитация как процесс физико-химического свойства?
Воздействие кавитации ускорило осаждение солей из воды, что привело к заклиниванию рабочего колеса насоса НВВ-25.
P (атм.) | T°C |
0.01 | 6.7 |
0.02 | 17.2 |
0.04 | 28.6 |
0.1 | 45.4 |
0.2 | 59.7 |
0.3 | 68.7 |
0.4 | 75.4 |
0.5 | 80.9 |
0.6 | 85.5 |
0.7 | 89.5 |
0.8 | 93 |
0.9 | 96.2 |
1 | 99.1 |
1.033 | 100 |
Вода в природе не является однородной и чистой средой без примесей. Все жидкости являются растворами, в которых достаточно большое количество примесей, в основном атмосферных газов. Из атмосферного воздуха в воде растворяется почти в два раза больше азота, нежели кислорода.
Так, в 1 л воды при температуре 20°С растворяется приблизительно 665 мл углекислого газа, а при 0°С — в три раза
больше, 1995 мл. При температуре 0°С в одном литре H2O может быть растворено: He — 10 мл, H2S — 4630 мл.
Повышение давления влечёт за собой увеличение растворимости газов.
Например, при давлении 25атм в 1 л воды растворяется углекислого газа 16,3 л, а при 53 атм — 26,9.Понижение давления даёт, соответственно, обратный эффект. Если оставить ёмкость с водой на ночь, на стенках образуются пузырьки газа. Ещё более наглядно и быстрее это можно увидеть в стакане с газировкой. В процессе кипячения воды мы также видим процесс образования пузырьков с газом и паром.
Видеодемонстрация описанного эффекта.
Это особо критично и чаще всего встречается в насосных системах, работающих на всасывание. Рабочее колесо или винт создают во всасывающей магистрали разряжение, которое в случае недостатка жидкости на входе (заужение прохода, излишнее количество поворотов трубопровода и т.д.), создают условия для кавитационного закипания жидкости.
Учёт кавитационного запаса насоса на стадии проектирования системы.
Т.е. физический смысл формулы H= Pb*10.2 – NPSH – Hf – Hv – Hs состоит в том, чтобы на максимальных рабочих параметрах насоса разряжение в его всасывающем патрубке не превышало бы давление насыщенных паров жидкости при рабочей температуре, т.е. система имела бы требуемый для бескавитационной работы подпор.
КАВИТАЦИЯ ЖИДКОСТИ
Под кавитацией понимается местное выделение из жидкости в зонах пониженного давления ее паров и газов (вскипание жидкости) с последующим разрушением (конденсацией паровых и смыканием газовых) выделившихся парогазовых пузырьков при попадании их в зону повышенного давления. Это разрушение пузырьков сопровождается местными гидравлическими микроударами большой частоты и высокого уровня ударных давлений.
Кавитация нарушает нормальный режим работы гидросистемы, а в отдельных случаях может вызвать разрушение ее агрегатов. Разрушительному действию кавитации подвергаются насосы, золотники, клапаны и прочие гидроагрегаты, причем это действие проявляется зачастую в очень короткое время. Так, например, наблюдаются случаи выхода из строя аксиально-поршневых насосов, происходящие в результате кавитационного разрушения (износа) распределительной пары и сопровождающегося недопустимого падения производительности за время работы от 20 мин. до 1 ч.
Схематически механизм возникновения кавитации и его разрушительного действия сводится к следующему. При понижении давления жидкости в како – либо точке потока до некоторой величины жидкость вскипает (происходит ее разрыв), выделившиеся же пузырьки газа и пара увлекаются потоком и переносятся в область более высокого давления, в которой паровые пузырьки конденсируются, а газовые сжимаются (смыкаются). Так как процесс конденсации парового сжатия газового пузырька происходит мгновенно, частицы жидкости перемещаются к его центру с большой скоростью, в результате кинетическая энергия соударяющихся частиц вызывает в момент смыкания пузырьков местные гидравлические микроудары, сопровождающиеся высокими забросами давления и температуры в центрах пузырьков (по расчетам температуры могут достигать значений 1000 – 1500 0 С и выше в местное давление может достигать 1500 – 2000 кг/см 2 ).
В том случае, если эти процессы протекают вблизи от стенок ограничивающих каналов, последние будут подвергаться непрерывным гидравлическим ударам (бомбардировкам), которые вызывают местные высокие температуры, развивающиеся в результате скачкообразности процесса и высокого уровня забросов давления. Указанные ударные действия частиц жидкости дополняются химическим воздействием на металл кислорода воздуха, выделяющегося из жидкости, а также воздействием электролитического характера.
Под действием высоких температур в присутствии кислорода воздуха происходит активное окисление (коррозия) контактирующих поверхностей. Происходящие при этом окислительные процессы усугубляются тем, что растворенные в жидкости воздух содержит почти в полтора раза больше кислорода, чем атмосферный воздух. Кроме того, интенсивность окислительных процессов повышается в результате разрушения под действием гидравлических микроударов окислительной пленки, которая в обычных условиях замедляет окисление металлических поверхностей деталей.
Рис. 20. Характер кавитационного разрушения плунжера
распределительного золотника следящей гидросистемы
В результате при длительной кавитации под действием указанных гидравлических ударов высокой повторяемости и одновременном воздействии высокой температуры происходит разрушение (эрозия) поверхностей деталей.
Кавитация наступает тем раньше, чем больше жидкость загрязнена твердыми частицами. Это обусловлено тем, что на поверхностях этих частиц адсорбируется тонкий слой воздуха, частицы которого при попадании в зону пониженного давления служат очагами, способствующими возникновению кавитации.
Разрушению подвергаются при развитой кавитации детали различных гидроагрегатов. На рис. 20 показан плунжер распределительного золотника (клапан) следящей гидросистемы, работавший в условиях значительного дросселирования жидкости. Кавитационному разрушению подвергаются также торцы блока цилиндров и межоконные перемычки распределительного диска аксиально-поршневых насосов, на поверхности которых образуются глубокие питинги и выколы.
При возникновении кавитации в трубопроводах сопротивление их значительно возрастает, а пропускная способность соответственно уменьшается. При небольших сечениях трубопровода, образуются газовые пробки и движение жидкостно-газовых фаз происходит чередующимися импульсами.
Кавитация жидкости в насосах наступает при условия, когда жидкость при всасывании отрывается по тем или иным причина от рабочего элемента насоса — поршня, лопасти, зубьев или прочих вытеснителей. Возможность отрыва зависит от вязкости жидкости и величины давления на входе в насос, а также от числа оборотов и конструктивных особенностей насосов. В частности кавитация возникает, если давление на входе во всасывающую камеру насоса окажется недостаточным для обеспечения неразрывности потока жидкости в процессе изменения скорости дальнейшего ее движения.
Предельно допустимым, с этой точки зрения, числом оборотов насоса является такое число, при котором абсолютное давление жидкости на входе в насос будет способно преодолеть без разрыва потока потери напора во всасывающей камере, обусловленные ее сопротивлением и силами инерции. В случае шестеренного и пластинчатого (лопастного) насосов к этим потерям добавляются потери, обусловленные центробежной силой, действующей на жидкость, вращающуюся вместе с ротором насоса.
Кавитация в насосах. Причины, последствия и как её избежать.
В этой статье я хотел бы снова коснуться такой важной темы при работе насосного оборудования, как кавитация. Однажды мы уже рассматривали вопрос кавитации и способ борьбы с ней, который предложил производитель Blackmer. Вы можете посмотреть эту статью здесь https://tehnogrupp.com/blog/kavitatsiya-v-nasosnykh-ustanovkakh
В этой же статье мы рассмотрим вопрос кавитации более полно, не привязываясь к конкретному производителю. В процессе работы мы очень часто сталкиваемся со следующими вопросами наших Покупателей: «Насос работает на жидкости без абразива и твердых включений (в некоторых случаях перекачивает очищенную питьевую воду), но насос почему-то щелкает, трещит, как будто перекачивает камни, а при разборе насоса у него такое состояние, что складывается впечатление, что он правда камни перекачивал. В чем причина?» Фото разобранного насоса представлено ниже:
А причина здесь в таком физическом явлении, как кавитация. Удивительно, но многие пользователи насосного оборудования вообще не слышали о таком явлении, хотя насосов оно отправило на свалку не мало. И всегда находилось какое-то оправдание данной поломке. То фильтр не тот установили, то качество насоса плохое, то жидкость не ту перекачивали. Хотя, пожалуй, после неправильной центровки вала это следующая по распространённости причина поломки насосов.
В чем причина возникновения кавитации и как она «ломает» насос?
0,3 бар и вода начинает закипать уже при температуре около 70С. Так и на стороне всасывания насоса давление может быть значительно ниже атмосферного. В итоге жидкость начинает «закипать» с образованием пузырьков пара. Затем жидкость перемещается в область нагнетания насоса, где давление выше атмосферного и пузырьки «схлапываются» с образованием ударной волны. В некоторых случаях давление при таком гидроударе может превышать 10000 бар. Естественно, что насосное оборудование не рассчитано на такие нагрузки и возникают повреждения, которые мы уже видели на фото выше.
Как бороться с кавитацией?
Стоит отметить, что чугун, из которого производится большая часть насосов, справляется с кавитацией плохо из-за быстрого разрушения графитных включений. Из относительно доступных материалов кавитации некоторое время может противостоять нержавеющая сталь. Также для уменьшения физических последствий кавитации используют различные твердые напыления и закалку наиболее уязвимых частей насоса, чтобы повысить сопротивление деформации верхнего слоя металла. Стоит отметить, что в производстве насосов данные методы используются нечасто, т.к. они дороги и неэффективны. Даже самый прочный материал не способен долго противостоять кавитации, а использование более стойких материалов, в большинстве случаев, нужно лишь для того, чтобы минимизировать ущерб насосу, если по той или иной причине он начал «кавитировать».
Из данной формулы видно, что кавитация будет менее вероятна, если будет увеличена высота подпора (или снижена высота всасывания, для самовсасывающих насосов), будет увеличено давление на поверхности жидкости (например, если ёмкость герметична, то можно повысить давление в емкости). Чем плотнее жидкость, тем выше вероятность кавитации. Также чем выше давление насыщенного пара, тем вероятность кавитации выше. Также кавитацию повышают потери напора на линии всасывания. Обобщая все вышесказанное, чтобы избежать кавитации, необходимо обеспечить «сплошной поток». Фото ниже наглядно демонстрирует, как при снижении давления на линии всасывания увеличивается ударная волна вследствие кавитации.
Для более полного понимания расчета кавитации приведу пример задачи:
Оцените NPSHa для насосной системы, которая рассчитана на откачку 200 м3/ч воды. Водный поток идет из бака, который находится при атмосферном давлении и температуре 250C. Минимальный уровень воды в баке над всасывающим патрубком насоса составляет 3 метра. Линия всасывания имеет диаметр 6 дюймов (
150 мм) и длину 10 метров. Насос должен перекачивать воду в другой бак с верхним соединением для впуска воды. Максимальная высота нагнетательного трубопровода (от также имеет диаметр 6 дюймов) над нагнетательным патрубком насоса составляет 12 метров. Разгрузочный бак работает под давлением 3 бара. В линии нагнетания нет регулирующего клапана. Предполагается, что линия нагнетания имеет длину 100 м, учитывая все фитинги и клапаны.
Решение:
1. Сначала определим физические показатели системы. 1.1 Плотность воды при 250C составляет
994,72 кг/м3 1.2 Давление паров при 250C = 0,032 бар (Эти данные можно взять из различных справочников)
2. Вторым этапом расчета NPSHA является определение потери давления в результате трения в линии всасывания. В данном случае перепад давления на всасывающей и нагнетательной линиях 6 дюймов составляет около 5 бар/км. Для линии всасывания 10 м перепад давления составляет 0,05 бар. Для расчета потери давления на линии всасывания можно использовать различные программы подбора насосного оборудования. Практически каждый производитель предоставляет такую программу расчета. В этом примере падение давления в сетчатом фильтре составляет около 0,09 бар. В случае установки нового фильтра, производитель фильтра должен дать значение для максимально возможного падения давления на фильтре. Это значение можно использовать для расчета расчета NPSH.
Т.е. для обеспечение работы без кавитации подойдет насос с кавитационным запасом NPSHr меньше 12,54 м
Москва,
проспект Андропова, 22, оф. 1815
Санкт-Петербург,
Новочеркасский пр-т, 58, оф. 511
КАВИТАЦИЯ
Полезное
Смотреть что такое «КАВИТАЦИЯ» в других словарях:
КАВИТАЦИЯ — (от лат. cavitas пустота) образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при… … Большой Энциклопедический словарь
КАВИТАЦИЯ — (от лат. cavitas пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (т. н. кавитац. пузырьков или каверн). Кавитац. пузырьки образуются в тех местах, где давление в жидкости становится ниже нек рого критич … Физическая энциклопедия
Кавитация — – физическое явление, наблюдающееся в зонах разрыва сплошности жидкости и характеризующееся образованием и последующим захлопыванием парогазовых пузырьков. Примечание. Кавитация сопровождается шумом, люминесценцией, вибрацией, при этом… … Энциклопедия терминов, определений и пояснений строительных материалов
КАВИТАЦИЯ — (Cavitation) явление образования движущимся телом незаполненного водой пространства в виде борозды; может иметь место при значительных скоростях хода судна, когда вода не будет успевать заполнять образующееся за кормой воздушное пространство.… … Морской словарь
кавитация — Физическое явление, наблюдающееся в зонах разрыва сплошности жидкости и характеризующееся образованием и последующим захлопыванием парогазовых пузырьков. Примечание Кавитация сопровождается шумом, люминесценцией, вибрацией, при этом могут… … Справочник технического переводчика
кавитация — сущ., кол во синонимов: 2 • суперкавитация (1) • фотокавитация (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
кавитация — Формирование пузырьков в воде, происходящее в случаях резкого увеличения скорости текущего потока на водопадах, перекатах и пр., что вызывает повышенную эрозию горных пород … Словарь по географии
КАВИТАЦИЯ — явление образования множества полостей («кавитационных пузырьков»), заполненных газом, паром или их смесью, внутри быстро движущейся жидкости в результате её холодного кипения в местах пониженного давления (напр. в вихревой зоне за гребным винтом … Большая политехническая энциклопедия
Кавитация — Моделирование кавитации Кавитация (от лат. cavitas пустота) процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости, сопровождающийся шумом и ги … Википедия
кавитация — и; ж. [от лат. cavitas пустота]. Спец. Образование в жидкости, вследствие резкого уменьшения давления, пузырьков, полостей, заполненных газом или паром. ◁ Кавитационный, ая, ое. К ые пузырьки. * * * кавитация (от лат. cavitas пустота),… … Энциклопедический словарь