Кчсм в офтальмологии что это

Исследование критической частоты слияния мельканий (КЧСМ)

Кчсм в офтальмологии что это. Смотреть фото Кчсм в офтальмологии что это. Смотреть картинку Кчсм в офтальмологии что это. Картинка про Кчсм в офтальмологии что это. Фото Кчсм в офтальмологии что это

Критической частотой слияния мельканий (КЧСМ) принято называть минимальную частоту световых вспышек, которая вызывает ощущение непрерывного равномерного свечения. В офтальмологической практике, а также в изучении психофизиологии зрения, КЧСМ считают диагностическим тестом, для выявления патологий, протекающих в зрительном пути.

В ходе теста, начинают с малой частоты мельканий, при которой обследуемый видит только серию раздельных световых вспышек. При увеличении частоты мельканий, у пациента появляется ощущение мерцания, в первый момент грубое, а затем и более тонкое. Наконец, когда частота мельканий достигает максимума, наступает видение равномерного непрерывного свечения. Такой метод исследования применяется для выявления показателя функциональной лабильности сетчатой оболочки и зрительного пути.

При исследовании КЧСМ используют такие приборы: «Свето-тест», «Хиазма-01», «Хиазма-02» и «КЧСМ-цвет». В целях диагностирования нарушений зрительных функций детей используют аппарат «КЧСМ-Д», который похож на детскую игрушку — автомобиль, мигающий фарой. Эти аппараты исследуют КЧСМ на разные цвета: красный, синий, зеленый и белый включительно.

Показатели КЧСМ в норме у здоровых людей бывают от 40 до 46 Гц (примерно 43 + 3 Гц). Поражение папилломакулярного пучка (при ретробульбарном неврите, ишемии зрительного нерва, рассеянном склерозе, атрофии зрительного нерва, макулярной дистрофии сетчатки типа Штаргарута, глаукоме и пр.) вызывает снижение частоты слияния мельканий в разной степени.

Поэтому, для точной дифференциальной диагностики патологий зрительного пути данные исследования КЧСМ нужно сопоставлять с результатами исследований поля зрения посредством кинетической либо статической периметрии. Снижение показателей КЧСМ (менее 30 Гц), обычно, указывает на возможные дефекты в поле зрения. Показатели КЧСМ снижается и с возрастом, так у здорового человека семидесяти лет, средние показатели КЧСМ находятся в пределах 38—40 Гц.

Значения КЧСМ практически не зависят от остроты зрения, величины зрачка и рефракции, поэтому, исследование можно проводить не выполняя коррекцию аметропии, при широком зрачке. В обоих здоровых глазах, величины КЧСМ обычно совпадают или могут различаться на 5—8Гц. Разницу эту в показателях КЧСМ обязательно учитывать в диагностике заболеваний зрительного пути для каждого глаза.

По всему полю зрения, показатели КЧСМ имеют разную величину: на периферии с височной и носовой сторон, показатели КЧСМ выше на 10—15Гц, чем в области макулы. В этой связи, существует возможность при помощи прибора «Хиазма-01», компьютерного варианта «Хиазма-02» проводить топическую диагностику нарушения зрительного пути обоих глаз или каждого в отдельности, определять раздельно нарушения функций зрения на любых участках поля зрения (височной, носовой, макулярной областях).

В случае поражений зрительного пути глаза до хиазмы, нарушение КЧСМ определяется только для этого глаза. При поражении зрительного пути в хиазме и вышележащих отделах мозга, изменения КЧСМ необходимо определять в обоих глазах. Сниженные показатели КЧСМ в какой-то части поля зрения одного глаза или обоих, позволяет говорить о поражении периферического нейрона зрительного пути либо центрального.

Определяющий момент для хорошего результат исследования — уровень и выбор оборудования, практическая подготовка врача. В «Московской Глазной Клинике» работают специалисты с высоким уровнем практической подготовки, которые владеют имеющимся у нас оборудованием для диагностики зрения.

Интересующие вас вопросы можно задать по телефонам 8 (800) 777-38-81 и 8 (499) 322-36-36 или онлайн, с помощью формы на сайте.

Источник

Кчсм в офтальмологии что это

Психофизиологические исследования предполагают достаточно большое количество экспериментальных методов. При определении психофизиологических особенностей зрительного восприятия широко используемыми современными методами являются ЭЭГ и «eye tracking», позволяющие определять электрическую активность коры полушарий мозга и следить за саккадами при предъявлении различных стимулов [3, 6]. Менее распространенным является метод, основанный на восприятии числа мельканий в единицу времени ‒ критической частоты слияния мельканий (КЧСМ).

Показатель КЧСМ зависит от большого числа факторов – размера тестирующего поля и места проекции на сетчатке, интенсивности и спектрального состава предъявляемого стимула, глубины модуляции и длительности стимулов, их количества при многократном предъявлении [1, 3, 6]. Увеличение интенсивности стимула и яркости стимула ведет к уменьшению показателя КЧСМ. Выявлено влияние на показатели КЧСМ предварительной адаптации, условий проведения измерения и побочных слуховых, температурных, обонятельных раздражителей, которые могут изменять КЧСМ в обе стороны [4].

Результаты величины КЧСМ у взрослых людей не одинаковы по данным различных литературных источников, что связано с отличиями в оборудовании и методиках измерения. Осложняет определение показателя КЧСМ и тот факт, что регистрация зависит не только от методики измерения, но и от физиологического состояния человека [4].

Показатель КЧСМ в норме как у взрослых, так и у детей составляет 41-45 Гц [2, 7, 8]. Красноперова Н.А. (1998) утверждает, что эти показатели характерны только для макулярной зоны сетчатки и только при центральном предъявлении стимула[5]. Есть мнение, что для центральной зоны сетчатки (5°) показатель КЧСМ составляет 40-45 Гц, для парацентральной зоны (10°-20°) – возрастает до 55 Гц, для периферии снижается до 35-40 Гц. Ряд авторов заявляют, что показатель КЧСМ на периферическом отделе сетчатки составляют 60 Гц [1].

Традиционный вариант КЧСМ предполагает, что стимул воспринимается, в основном, макулярной областью сетчатки. На данный момент установлено, что при предъявлении стимула в угловом диапазоне 10°-55° показатель КЧСМ пропорционален логарифму углового размера поля зрения и возрастает к периферической области сетчатки на 10-15 Гц [1].

При центральном предъявлении КЧСМ для зеленого стимула в норме на несколько Гц выше, чем для красного. Это связано с тем, что в области центральной ямки в большем количестве находятся красно-чувствительные колбочки, а в парацентральной области – в основном зеленые. Так, разность между данными на стимуляцию зеленым и красным светом составляет 3-4 Гц. Эта разность является достоверной во всех возрастных групп, кроме старшей, и может служить признаком нормы показателей КЧСМ для монохроматических стимулов красного и зеленого цвета [1].

Считается, что величина показателя КЧСМ не зависит от остроты зрения [1, 8]. Это утверждение справедливо только при центральном предъявлении стимула и при небольшом размере источника, поскольку проекционное поле окажется в макулярной области сетчатки. В случае нарушений остроты зрения и когда размер источника достаточно большой, проекция на сетчатке будет другого размера, и, следовательно, в зависимости от нарушения остроты величина показателя КЧСМ будет иной, чем в случае нормальной остроты зрения.

В настоящей статье представлены результаты по показателю КЧСМ для возрастной группы 20-25 лет без учета гендерных особенностей. Эксперимент проводился с помощью оригинальных КЧСМ-очков (рис. 1а). Источником стимула является трехцветный светодиод размером 4 мм, расстояние от источника до поверхности глаза составляет 20 мм. КЧСМ-очки имеют подключение к ПК посредством USB-интерфейса, управление осуществляется посредством специализированного ПО «eyeLight», позволяющего задавать спектральный состав, интенсивность, глубину и длительность стимула (рис. 1б). Исследования проводились при скорости 1 Гц/с в сторону увеличения частоты мельканий для белого, красного, зеленого и синего цветов. Исследования проводились отдельно для каждого глаза, эксперимент повторялся для правого глаза через 10 минут после прочтения испытуемым мелкого текста с ЖК дисплея, находящегося на расстоянии наилучшего зрения, с целью выявления усталости зрительного анализатора на показатель КЧСМ.

Следует отметить, что средние значения показателя КЧСМ по результатам эксперимента (табл. 1) выше описанных в литературе [1, 2, 7, 8].

Возможной причиной этого является большая область проекционного поля стимула на сетчатку вследствие близости источника света к глазу. Так же следует отметить разницу между показателями для различных цветов стимула: максимальное значение КЧСМ имеет для зеленого цвета, на 1-1,5 Гц меньше для красного, и наименьшее значение (на 2-2,5 Гц меньше по отношению к зеленому цвету) для синего цвета стимула. Скорее всего, это связано с количеством различного типа колбочек в области проекционного поля стимула. Это же является причиной разности между показателями КЧСМ для зеленого и красного цветов, согласно [2] разность составляет 3-4 Гц.

Средние значения показателя КЧСМ по результатам эксперимента

Источник

Электрофизиологические методы исследования в офтальмологии.

У детей

У взрослых

Взрослое отделение

Детское отделение

Что лечим

Отделение оптометрии

Услуги и цены

Клиническая электрофизиология зрительной системы изучает электрическую активность основных отделов зрительного анализатора.

Электрофизиологические методы позволяют объективно оценить функциональное состояние зрительного анализатора на уровне различных слоев и нейронов сетчатки и зрительного пути и используются для диагностики различных заболеваний сетчатки и зрительного пути.

Возможности электрофизиологических методов:

Основными электрофизиологическими методами исследования органа зрения в клинике являются электроретинография (ЭРГ), электроокулография (ЭОГ) и запись зрительных вызванных потенциалов коры головного мозга (ЗВКП).

ЭРГ используется для оценки функционального состояния сетчатки, ЭОГ – для оценки функции пигментного эпителия, ЗВКП – для оценки зрительного пути от сенсорной сетчатки до зрительных центров.

Методы дополняют друг друга, а их выбор определяется необходимостью дифференциального диагноза и уточнения локализации патологического процесса.

Часто необходимо использовать все ЭФ методы исследования для оценки всего зрительного пути.

Противопоказаниями для проведения электрофизиологических исследований являются беспокойное поведение больных, эпилепсия, а для регистрации ЭРГ сюда добавляются конъюнктивиты, воспалительные заболевания роговицы и склеры, ранние сроки после оперативного лечения на глазном яблоке и придаточном аппарате глаза.

ЭРГ представляет собой графическое отобра­жение изменений биоэлектрической активности клеточных элемен­тов сетчатки в ответ на световое раздражение и используется для оценки функционального состояния сетчатки.

Показания к проведения электроретинографии:

1. Необходимость оценки функционального состояния сетчатки, том числе и в тех случаях, когда определить зрительные функции обычным методом невозможно, а глазное дно не офтальмоскопируется, при помутнении сред глаза (бельмо роговицы, катаракта, гемофтальм), в том числе для прогноза зрительных функций в результате предполагаемого оперативного лечения.

2. Диагностика и дифференциальная диагностика заболеваний сетчатки, в том числе наследственных, так как в ряде случаев изменения ЭРГ являются патогномоничными симптомами заболева­ния. Диагностика поражения палочковой и колбочковой систем сетчатки. Амблиопия.

3. Оценка глубины, распространенности, локализации и степени поражения сетчатки (в том числе при отслойке сетчатки, диабетической ретинопатии, травме, хороидитах и т.д.).

4. Дифференциальная диагностика заболеваний сетчатки и зри­тельного нерва различного генеза.

5. Выявление начальных функциональных изменений сетчат­ки, предшествующих клиническим проявлениям заболевания (меди­каментозная интоксикация, металлозы, симпатическая офтальмия, сосудистые нарушения и пр.).

6. Контроль за динамикой патологиче­ского процесса и эффективностью лечения, определение прогноза.

7. Мониторинг больных, получающих лекарственные препараты с возможным побочным ретинотоксическим действием при длительном их применении.

8. Неожиданная потеря зрения.

9. Педиатрическая практика.

В основе принятой в электроретинографии классификации ЭРГ лежат амплитудные характеристики основных а- и b-волн ЭРГ, а также их временные параметры. Различают следующие виды ЭРГ: нормальную, супернормальную, субнормальную (плюс- и минус-негативную), угасшую, или нерегистрируемую (отсутствующую). Таким образом, при патологических состояниях сетчатки возможно как изменение отдельных компонентов ЭРГ, так и полное её исчезновение.

Электроокулография позволяет выявить патологические изменения пигментного эпителия сетчатки и фоторецепторов. Для регистрации нормальной электроокулограммы необходимо нормальное функционирование фоторецепторов и пигментного эпителия, контакт между этими слоями, а также адекватное хориоидальное кровоснабжение.

Для клинических целей используют расчётную величину – коэффициент Ардена.

Коэффициент Ардена (КА) считают нормальным, если он превышает 185 %. (Обычно 180-250%). С целью оценки патологических состояний сетчатки КА подразделяют на субнормальный (135—185%), анормальный (110—135%), погасший (100—110%), извращенный (ниже 100 %).

Электроокулографию используют в диагностике различных заболеваний сетчатки дистрофической, воспалительной и токсической природы, при циркуляторных нарушениях и другой патологии когда в процесс вовлекается пигментный эпителий (пигментная абиотрофия сетчатки, врождённая стационарная ночная слепота, болезнь Беста др.).

Зрительные вызванные потенциалы (ЗВП) позволяют оценить функциональное состояние зрительных путей на всём протяжении до центральных отделов зрительного анализатора.

Метод регистрации ЗВП используется в клинике для диагностики патологии зрительного нерва и ретрохиазмальных поражений зрительных путей и зрительных центров; при отеке зрительного нерва, воспалении, атрофии, компрессионных повреждениях травматического и опухолевого генеза, метаболических или токсических оптических нейропатиях, для оценки функции зрительного нерва и зрительных путей после орбитальной и интракраниальной хирургии, для диагностики амблиопии.

ЗВП дополняют результаты электроретинографии и могут являться единственным источником информации о зрительной системе в тех случаях, когда ЭРГ невозможно зарегистрировать по тем или иным причинам.

Виды ЗВП зависят от характера стимула: ЗВП на вспышку света называется вспышечным (ВЗВП), на паттерн-стимул — паттерн-ЗВП (ПЗВП). В качестве стимуляции чаще используется реверсивный шахматный паттерн. Генерируемый при этом ответ является наиболее стабильным, наименее вариабельным по амплитуде и латентности пиков.

Зрительные ВП исследуются также в ответ на стандартную фотостимуляцию («вспышку»). Ответ на такую стимуляцию менее стабильный, чем при стимуляции реверсивным шахматным паттерном, изменчив в популяции даже в норме, менее специфичен для оценки центрального зрения. Однако зрительные ВП на вспышку обладают одним важным преимуществом перед шахматным паттерном – они не требуют кооперации пациента, могут регистрироваться у пациентов, которым не может быть проведена регистрация паттерн-ЗВП в связи с очень низкой остротой зрения и отсутствием фиксации взора.

Критериями нарушения проведения по зрительным путям при оценке ЗВП являются отсутствие ответа или значительное снижение амплитуды, удлинение латентности пиков, значительные различия в амплитуде и латентности при стимуляции правого и левого глаз. В целом, латентность – более стабильный показатель, амплитуда пиков более вариабельна, чем латентность.

Изменения ПЗВП могут быть связаны и с патологией макулярной области сетчатки, поэтому информативность результатов значительно повышается при одновременной регистрации ЗВП с ЭРГ.

Таким образом, по результатам электрофизиологических исследований (ЭФИ) можно отличить норму от патологии, определить уровень поражения, а также подтвердить или уточнить клинический диагноз. В ряде случаев ЭФ-изменения являются патогномоничными симптомами заболевания. Однако ЭФИ не являются самостоятельным диагностическим инструментом и интерпретация результатов электрофизиологических методов исследования должна всегда проводиться в контексте клинической картины заболевания.

Источник

Определение электрической лабильности зрительного нерва (КЧСМ)

В ряде гуманитарных областей знания употребляется термин «специфический раздражитель». Так называют физическое или химическое воздействие, реагировать на которое является эволюционным предназначением данного органа чувств. Так, специфический раздражитель для уха – звуковые колебания, для кожи – температура и/или механические прикосновения, и т.д.

Кчсм в офтальмологии что это. Смотреть фото Кчсм в офтальмологии что это. Смотреть картинку Кчсм в офтальмологии что это. Картинка про Кчсм в офтальмологии что это. Фото Кчсм в офтальмологии что это

Электрический ток для глаза не является специфическим раздражителем. Вообще, глаз как орган чувств исключительно важен и великолепно развит, но обратной стороной этого является очень узкая специализация: спектр ощущений, которые глаз может передать мозгу, весьма скуден. Помимо собственно зрительного сигнала, это могут быть болезненные ощущения инородного тела, рези, распирания, зуда. В случае интенсивного неспецифического воздействия глаз способен реагировать лишь так, как позволяет ему нейрофизиологическое устройство: например, при сильном ударе светочувствительные рецепторы сетчатки сотрясаются настолько сильно, что у нас, как мы говорим, «сыплются искры из глаз» (именно световые искры, а не звуки или запахи).

Аналогичные, т.е. сугубо световые ощущения вызывает в глазу и электрический ток. Это явление носит название «фосфен». Для здорового глаза минимальная сила тока, на которую может среагировать сетчатка и которую зрительная кора мозга интерпретирует как слабое свечение, составляет порядка 30-40 микроампер. Чуть более сильный ток воспринимается уже как искра или вспышка света, обычно в периферическом поле зрения со стороны виска. Характерно, что глаз реагирует не на сам ток, а на его возникновение и исчезновение (в электротехнике этот исчезающе короткий момент называют переходным процессом); стабильная, фиксированная сила тока фосфенных ощущений не вызывает.

«Электротерапия», как и «электродиагностика», в медицине используется давно и служит источником неоценимой клинической информации, которую зачастую невозможно получить никаким иным способом (вспомним, например, ЭЭГ или ЭКГ). В офтальмологии также разработаны и с успехом применяются методики электронейрофизиологического исследования, позволяющие оценить состояние важнейших элементов зрительного анализатора – сетчатки и зрительного нерва.

В частности, применяется электрическая модификация методики КЧСМ (критическая частота слияния мельканий). Диагностически информативной является та частота мерцания импульсного источника света, при которой отдельные вспышки мозгом не различаются (сливаются) и свет воспринимается как непрерывный. Повышение или понижение этой критической частоты в сравнении с ее нормативными, среднестатистическими показателями свидетельствует о наличии нейроретинальной патологии.

Стоимость исследования

В нашем офтальмологическом центре цена определения электрической лабильности зрительного нерв (КЧСМ) составляет 500 рублей.

В приборе, который получил название электроофтальмостимулятор, роль световых вспышек играют фосфены, индуцированные импульсным постоянным током. Сила тока до 1 миллиампера и напряжение около 10 В – такие параметры для пациента совершенно безопасны, но, вместе с тем, вполне достаточны для получения клинически значимых результатов. Кроме того, пациентов с тревожно-мнительным личностным радикалом сможет дополнительно успокоить тот факт, что никакого контакта с поверхностью глазного яблока методика не требует: электрод контактирует с закрытым веком.

Сила тока плавно повышается до некоторой пороговой величины (она в каждом случае индивидуальна и обязательно регистрируется врачом по показателям прибора), за которой возникает фосфен. Второй электрод, необходимый для прохождения тока через тело человека, пациент держит в контрлатеральной руке (т.е. на стороне, противоположной диагностируемому глазу). При интенсивности потока электронов, не превышающей 200-300 мкА, пациент никакого дискомфорта, как правило, не ощущает; при возрастании силы тока возможны ощущения легкого раздражения и/или жжения в месте контакта с электродом. Об этом пациент предупреждается заранее; его просят сосредоточиться только на световых реакциях глаза.

Частота, при которой фосфены (и какие-либо иные световые ощущения) исчезают, непосредственно связана с лабильностью, нейрофизиологической подвижностью зрительного анализатора, и служит ее диагностическим критерием. Заметим, что в случае использования «настоящих», оптических световых импульсов пациенту значительно труднее определить этот момент и, соответственно, точность результатов оказывается существенно ниже.

Кчсм в офтальмологии что это. Смотреть фото Кчсм в офтальмологии что это. Смотреть картинку Кчсм в офтальмологии что это. Картинка про Кчсм в офтальмологии что это. Фото Кчсм в офтальмологии что это

Нормативно-критериальными порогами для здоровой взрослой популяции считаются, как указывалось выше, значения силы тока 30-40 мкА (минимальный порог) и частоты 40-50 Гц (порог исчезновения фосфенов). В сравнении с этим показателем, у детей и у лиц в возрасте более 40-45 лет статистически установлена более низкая чувствительность к электротоку (т.е. выше порог силы тока, за которой появляются фосфены), и одновременно – более низкая лабильность (т.е. критическая частота слияния), поэтому в данных категориях используются другие нормативы.

Если говорить о патологических изменениях чувствительности и КЧСМ, то резкое снижение лабильность служит диагностическим аргументом в пользу оптического или оптохиазмального неврита (варианты воспаления зрительного нерва). При т.н. ретробульбарном неврите с воспалением осевого пучка проводящих нейронных волокон, напротив, показатели могут быть относительно нормальными, и это также учитывается при интерпретации. В случаях тяжелого острого неврита, сопровождающегося глубоким снижением зрения как такового, при травматическом пресечении зрительного нерва, а также при полной его атрофии – эффект фосфенов не возникает вообще (при частичной атрофии зрительного нерва данные об аномальной чувствительности и КЧСМ анализируются в контексте с другими диагностическими данными).

При застойных явлениях в диске зрительного нерва (срощенный с сетчаткой «приемник» зрительного сигнала), как правило, порог электрочувствительности повышен, а лабильность снижена.

Особую важность результаты методики КЧСМ в ее «электрифицированном» варианте приобретают в диагностике заболеваний, обусловливающих снижение прозрачности глазных оптических сред – бельма различного происхождения, катаракта, гемофтальм (массивное кровоизлияние), дегенеративные процессы фиброза и пр. Высокая информативность и важность таких результатов связана с тем, что реагирование на индуцированные током вспышки не зависит от прозрачности оптических сред (в отличие от реагирования на реальные световые импульсы). Если сетчатка и зрительный нерв созранны и функционально состоятельны, фосфены появятся в любом случае, даже при практически полной светонепроницаемости глазной оптики. Если же помутнение сопровождается еще и резким повышением порога электрической чувствительности, это свидетельствует о тотальной, сочетанной патологии всей нейро-оптической системы и служит крайне неблагоприятным прогностическим признаком в отношении зрения как такового.

Следует подчеркнуть, в дополнение к вышесказанному, что ни одна диагностическая методика в медицине (и, в частности, в офтальмологии) не может и не должна считаться достаточной: обследование, чем бы ни была вызвана его необходимость, всегда является комплексным и включает несколько методов диагностики. Сами по себе результаты отдельной методики, даже самой совершенной, ненадежны и недостоверны: всегда есть вероятность, что они отражают не патологию, а идиопатическую особенность данного организма, или же попросту являются артефактом вследствие случайного сбоя оборудования или ошибки регистрации. Поэтому сбор и интерпретация диагностических данных – многоаспектный, вдумчивый и кропотливый процесс, особенно если речь идет о сохранении и/или восстановлении столь важной функции, как зрение. Так, результаты экспериментального определения электирической чувствительности и критической частоты слияния мельканий приобретают истинное значение и вес в сочетании с данными, полученными посредством электроэнцефалографии, периметрии и кампиметрии (методологический подход Е.Н.Семеновской и А. И.Богословского, 1963), а также, по показаниям, рефрактометрии, томографических и др. методов.

Источник

Критическая частота слияния мельканий

Кчсм в офтальмологии что это. Смотреть фото Кчсм в офтальмологии что это. Смотреть картинку Кчсм в офтальмологии что это. Картинка про Кчсм в офтальмологии что это. Фото Кчсм в офтальмологии что это

Что такое критическая частота слияния мельканий?

Критическая частота слияния мельканий – это максимальная частота вспышек, при которой глаз человека еще способен различать их по-отдельности, а не сливать воедино. Данное исследование относится к нейроофтальмологии и исследует состояние зрительного анализатора в целом, включая зрительные нервы, кору головного мозга, а не только сам глаз как орган.

Когда мы смотрим телевизор или на монитор компьютера, нам кажется, что изображение поступает непрерывно, картинки плавно сменяют друг друга, хотя это совершенно не так.

Изображение, посылаемое на экран электронных устройств отправляется отдельными вспышками, просто частота смены расположения и цвета данных вспышек намного выше, чем критическая частота слияния мельканий к которой способен человеческий глаз. Однако если бы производители современных электронным устройств начали снижать выбранную частоту, то при определенном пороговом уровне частот наш зрительный анализатор смог бы различать эти вспышки по-отдельности (в ущерб удовольствию от просмотра изображения).

Именно это, но в упрощенной форме, и происходит во время исследования КЧСМ на приеме у офтальмолога.

Для чего необходимо знать величину КЧСМ?

Существуют определенные нормы данного показателя, как правило это от 40 до 46 Гц. Если результаты исследования попадают в данный интервал, это говорит о том, что состояние сетчатки, зрительного нерва и центральных отделав зрительного анализатора в полном порядке, свет воспринимается сетчаткой, перерабатывается в нервный импульс, своевременно проводится в кору головного мозга и там анализируется. Если этот параметр значительно снижен (30 Гц и менее) – на пути нервного импульса существуют преграды.

Это могут быть нарушения центральной зоны сетчатки (возрастные макулодистрофии, диабетической и гипертонической ретинопатии, амблиопия, макулярные отеки, эпиретинальные мембраны и др.), зрительных нервов и проводящих путей (глаукоматозная, травматическая, геморрагическая атрофия зрительного нерва, объемные образования головного мозга, которые сдавливают нервы и др.) и корковых представительств анализатора (травматические или постинсультные).

При подозрении на все эти патологические изменения врач и может назначить данное исследование.

Не стоит паниковать, если КЧСМ снижен незначительно, такое возможно при избыточной зрительной нагрузки и под воздействием интоксикаций (алкогольной, табачной и др) и носит обратимый характер.

Как проходит исследование?

Исследование проводят по возможности в затемненной комнате, на пациента одеваются специальные светонепроницаемые очки, в которые перед каждым глазом установлен светодиод, частота зажигания которого регулируется. Начинают исследование с редких низкочастотных импульсов, которые глаз с легкостью различает. После частоту мельканий начинают медленно увеличивать до тех пор, пока глаз перестанет отличать отдельные вспышки, о чем пациент должен сообщить исследователю, это и будет критической частотой слияния мельканий.

Исследования проводят отдельно каждым глазом, если предполагаемая область поражения находится между сетчаткой и хиазмой. Если пораженная область находится между корой головного мозга и хиазмой, то световой импульс предъявляют перед обоими глазами.

Где можно пройти данное исследование?

Данное исследование можно провести в СМ-клинике (Москва), Московская глазная клиника, Ниармедик (Москва), ЦКБ РАН (Москва) и в др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *