Коэффициент вариации признака равен 49 это означает что

Коэффициент вариации (CV)

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Коэффициент вариации (coefficient of variation, CV) — это статистическая мера дисперсии (разброса) данных вокруг некоторого среднего значения. Коэффициент вариации представляет собой отношение среднеквадратичного отклонения к среднему значению и является весьма полезной величиной для сравнения степени вариации при переходе от одного ряда данных к другому, даже если их средние значения резко отличаются друг от друга.

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Понимание коэффициента вариации

Коэффициент вариации показывает степень изменчивости некоторой выборки данных по отношению к среднему их значению. В финансах данный коэффициент позволяет инвесторам определить, насколько велика волатильность, или риск, по сравнению с величиной ожидаемой прибыли от инвестиций.

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Чем меньше значение CV, тем лучший компромисс наблюдается между риском и доходностью. Обратите внимание, что если ожидаемая доходность в знаменателе отрицательна или равна нулю, полученное значение коэффициента может ввести вас в заблуждение.

Коэффициент вариации может быть весьма полезен при использовании соотношения риск/прибыль для выбора объекта инвестиций. Например, инвестор не склонный к риску будет рассматривать активы с исторически низкой степенью волатильности и высокой степенью доходности по отношению к общему рынку (или к отдельной отрасли). И наоборот, инвесторы склонные к риску, будут стремиться инвестировать в активы с исторически высокой степенью волатильности.

Формула CV может использоваться для определения дисперсии между исторической средней ценой и текущими показателями цены акции, товара или облигации.

Обычно данный коэффициент используют в таких целях как:

КЛЮЧЕВЫЕ МОМЕНТЫ

Формула CV

Ниже приведена формула для расчета коэффициента вариации:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Обратите внимание, что если значение ожидаемой доходности в знаменателе формулы коэффициента вариации отрицательна или равна нулю, то результат расчёта по ней нельзя считать корректным.

Коэффициент вариации в Excel и Open Office

Коэффициент вариации можно достаточно легко рассчитать в Excel. Несмотря на то, что в нём нет стандартной функции для расчёта CV, но зато есть функции позволяющие рассчитать стандартное отклонение (СТАНДОТКЛОН) и среднее значение (СРЗНАЧ). Сначала используйте функцию стандартного отклонения, затем вычислите среднее значение, а после этого разделите ячейку, содержащую стандартное отклонение, на ячейку содержащую среднее значение.

В Open Office данный показатель рассчитывается аналогично. Функция стандартного отклонения здесь — STDEV, а функция среднего значения — AVERAGE.

Давайте рассмотрим пример расчёта коэффициента вариации в Open Office. Предположим, что у нас есть три потенциальных объекта для инвестиций — объект А, объект Б и объект В. Прибыль по каждому из этих проектов за последние 6 лет занесена в таблицу представленную ниже:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Давайте рассчитаем значение CV для каждого из этих объектов. Начнём с расчёта стандартных отклонений. Для этого применим к ряду значений прибыли отдельно по каждому объекту функцию STDEV:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Аналогичным образом рассчитаем среднее значение для каждого ряда данных:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Наконец рассчитаем CV. Для этого разделим полученные значения отклонений на средние значения. В результате получим следующую таблицу:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Кликните по картинке для увеличения

Очевидно, что из всех представленных объектов инвестиций предпочтительным будет объект Б имеющий наименьшее значение коэффициента CV.

Пример использования коэффициента вариации для выбора объекта инвестиций

Рассмотрим инвестора не склонного к риску, который хочет инвестировать в биржевой фонд (ETF) состоящий из корзины ценных бумаг отслеживающей индекс широкого рынка. Инвестор выбирает SPDR S&P 500 ETF, Invesco QQQ ETF и iShares Russell 2000 ETF. Затем он анализирует доходность и волатильность выбранных ETF за последние 15 лет и предполагает, что в будущем они могут иметь аналогичную доходность в отношении к своим долгосрочным средним значениям.

Для принятия решения инвестором используется следующая 15-летняя историческая информация:

Исходя из этих данных, инвестор может инвестировать либо в SPDR S&P 500 ETF, либо в iShares Russell 2000 ETF, так как соотношение риска и вознаграждения для них является сравнительно одинаковым. А для Invesco QQQ ETF соотношение риск-доходность, как видите, будет несколько хуже.

Источник

Тема 6 Показатели вариации

Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц.

Основными показателями, характеризующими вариацию, являются: размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Размах вариации – простейший показатель, разность между максимальным и минимальным значениями признака.

\[ \begin R=x_-x_ \end \] Недостатком является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ.

Дисперсия – средний квадрат отклонений значений признака от их средней величины и определяется по формулам простой

Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.

Показатели вариации могут быть использованы не только в анализе изменчивости изучаемого признака, но и для оценки степени воздействия одного признака на вариацию другого признака, т.е.е в анализе взаимосвязей между показателями.

При проведении такого анализа совокупность должна представлять собой множество единиц, каждая из которых характеризуется двумя признаками – факторным и результативным.

Для выявления взаимосвязи исходная совокупность делится на две или более групп по факторному признаку. Выводы о степени взаимосвязи базируются на анализе вариации результативного признака. При этом применяется правило сложения дисперсий:

Межгрупповая дисперсия отражает ту часть вариации результативного признака, которая обусловлена воздействием факторного признака. Это воздействие проявляется в отклонении групповых средних от общей средней:

Если факторный признак, по которому производится группировка, не оказывает никакого влияния на результативный признак, то групповые средние будут равны между собой и совпадут с общей средней. В этом случае межгрупповая средняя будет равна нулю.

Средняя из внутригрупповых дисперсий отражает ту часть вариации результативного признака, которая обусловлена действием всех прочих неучтенных факторов, кроме фактора, по которому осуществлялась группировка:

Теснота связи между факторным и результативным признаком оценивается на основе эмпирического корреляционного отношения:

\[ \begin \eta_э = \sqrt < \frac <\delta^2> <\sigma_o^2>> \end \] Данный показатель может принимать значения от 0 до 1. Чем ближе к 1 будет его величина, тем сильнее взаимосвязь между рассматриваемыми признаками.

Среди множества варьирующих признаков, изучаемых статистикой, существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными. Альтернативный признак принимает всего два значения – 0 и 1 с весами соответственно p и q. Поэтому среднее значение альтернативного признака равно р. А дисперсия альтернативного признака равна pq. Дисперсия альтернативного признака равна произведению доли признака, обладающего характеристикой на долю признака, не обладающего характеристикой. Предельное значение дисперсии для альтернативного признака равно 0,25 при р=0,5.

Дисперсия альтернативного признака широко применяется в выборочном обследовании.

Изменения частот в вариационных рядах изменяются закономерно в связи с изменением варьирующего признака. Такие закономерности называются закономерностями распределения.

Основная задача анализа вариационных рядов заключается в выявлении подлинной закономерности распределения путем исключения влияния второстепенных, случайных для данного распределения факторов.

Если увеличить объем совокупности и уменьшить интервал в группах, то графическое изображение приближается к некоторой плавной кривой, которая называется кривой распределения.

Кривая распределения – графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант.

Теоретическая кривая распределения – кривая, выражающая общую закономерность данного типа распределения в чистом виде, исключающего влияние случайных для него факторов.

Выяснение общего характера распределения предполагает оценку его однородности, а также расчет показателей асимметрии и эксцесса.

При сравнительном изучении асимметрии нескольких распределений с разными единицами измерения вычисляется относительный показатель асимметрии:

Его величина может быть положительной (для правосторонней асимметрии) и отрицательной (для левосторонней асимметрии).

Применение данного показателя дает возможность определить не только величину асимметрии, но и проверить ее наличие в генеральной совокупности. Принято считать, что асимметрия выше 0,5 (независимо от знака) считается значительной. Если асимметрия меньше 0,25, она считается незначительной.

Если коэффициент асимметрии находится в интервале от 0,25 до 0,5, то наличие асимметрии в генеральной совокупности проверяется с помощью определения оценки существенности на основе средней квадратической ошибки:

Для симметричных распределений может быть рассчитан показатель эксцесса, который показывает, насколько резкий скачок имеет изучаемое явление. Показатель эксцесса определяется на основе центрального момента четвертого порядка по формуле:

Если показатель эксцесса больше нуля, то распределение островершинное и скачок считается значительным, если коэффициент эксцесса меньше нуля, то распределение считается плосковершинным и скачок считается незначительным. Среднеквадратическая ошибка эксцесса показывает, насколько существенен скачок в явлении и рассчитывается по формуле:

\[ \begin \sigma_ = \sqrt < \frac<24n(n-2)(n-3)> <(n-1)^2(n+3)(n+5)>> \end \] К структурным характеристикам ряда распределения относятся мода, медиана, квартили, децили и перцентили.

Квартили представляют собой значение признака, делящее ранжированную совокупность на четыре равновеликие части. Различают квартиль первого порядка (нижний квартиль) и квартиль третьего порядка (верхний квартиль). Каждый из них отсекает соответственно ¼ и ¾ совокупности. Для расчета квартилей используются следующие формулы:

Децили – варианты, делящие ранжированный ряд на десять равных частей. Первый дециль отсекает 1/10 часть совокупности, а девятый дециль отсекает 9/10 частей. Рассчитываются децили по аналогичным формулам:

Перцентили – варианты, которые делят ранжированную совокупность на 100 частей.

Источник

Коэффициент вариации: для чего нужен, расчет, примеры, упражнения

Содержание:

В коэффициент вариации (CV) выражает стандартное отклонение относительно среднего. То есть он пытается объяснить, насколько велико значение стандартного отклонения по отношению к среднему.

Например, переменный рост четвероклассников имеет коэффициент вариации 12%, что означает, что стандартное отклонение составляет 12% от среднего значения.

Обозначается CV, коэффициент вариации является безразмерным и получается делением стандартного отклонения на среднее значение и умножением на сто.

Чем меньше коэффициент вариации, тем меньше отклонение данных от среднего. Например, в переменной со средним значением 10 и другой со средним значением 25, обе со стандартным отклонением 5, их коэффициенты вариации составляют 50% и 20% соответственно. Конечно, первая переменная более изменчива (дисперсия), чем вторая.

Рекомендуется работать с коэффициентом вариации для переменных, измеряемых в шкале пропорций, то есть шкалах с абсолютным нулем независимо от единицы измерения. Примером может служить переменная расстояния, которая не имеет значения, измеряется она в ярдах или метрах, ноль ярдов или ноль метров означает одно и то же: нулевое расстояние или смещение.

Для чего нужен коэффициент вариации?

Коэффициент вариации служит для:

— Коэффициент вариации часто используется как показатель надежности в научных экспериментах. Говорят, что если коэффициент вариации составляет 30% или больше, результаты эксперимента следует отбросить из-за их низкой надежности.

— Это позволяет предсказать, насколько сгруппированы вокруг среднего значения изучаемой переменной, даже не зная ее распределения. Это очень помогает при оценке ошибок и вычислении размеров выборки.

Предположим, что переменные вес и рост людей измеряются в совокупности. Вес с CV 5% и рост с CV 14%. Если вы хотите взять выборку из этой совокупности, размер выборки должен быть больше для оценок роста, чем для веса, поскольку существует большая вариативность в измерении роста, чем в измерении веса.

Важное наблюдение за полезностью коэффициента вариации заключается в том, что он теряет смысл, когда значение среднего близко к нулю. Среднее значение является делителем вычисления CV, и, следовательно, очень маленькие его значения приводят к тому, что значения CV будут очень большими и, возможно, не поддающимися вычислению.

Как рассчитывается?

Расчет коэффициента вариации относительно прост, достаточно знать среднее арифметическое и стандартное отклонение набора данных, чтобы рассчитать его по формуле:

Если они неизвестны, но данные доступны, можно предварительно рассчитать среднее арифметическое и стандартное отклонение, используя следующие формулы:

Примеры

Пример 1

Были измерены веса в кг группы из 6 человек: 45, 62, 38, 55, 48, 52. Мы хотим знать коэффициент вариации переменной веса.

Он начинается с вычисления среднего арифметического и стандартного отклонения:

Ответ: коэффициент вариации переменного веса 6 человек в выборке составляет 16,64%, при среднем весе 50 кг и стандартном отклонении 8,32 кг.

Пример 2

В отделении неотложной помощи больницы измеряют температуру тела в градусах Цельсия у 5 детей, находящихся на лечении. Результаты 39-е, 38-е, 40-е, 38-е и 40-е. Какой коэффициент вариации переменной температуры?

Он начинается с вычисления среднего арифметического и стандартного отклонения:

Теперь он подставляется в формулу для коэффициента вариации:

Ответ: коэффициент вариации температурной переменной для 5 детей в выборке составляет 2,56%, при средней температуре 39 ° C и стандартном отклонении 1 ° C.

Что касается температуры, то следует проявлять осторожность при обращении с весами, поскольку, будучи переменной, измеряемой в интервальной шкале, она не имеет абсолютного нуля. В рассматриваемом случае, что бы произошло, если бы температуры были преобразованы из градусов Цельсия в градусы Фаренгейта:

Рассчитываются среднее арифметическое и стандартное отклонение:

Теперь он подставляется в формулу для коэффициента вариации:

Ответ: коэффициент вариации температурной переменной у 5 детей в выборке составляет 1,76%, при средней температуре 102,2 ° F и стандартном отклонении 1,80 ° F.

Решенные упражнения

Упражнение 1

Вес в кг 10 сотрудников почтового отделения был измерен: 85, 62, 88, 55, 98, 52, 75, 70, 76, 77. Мы хотим знать коэффициент вариации переменной веса.

Рассчитываются среднее арифметическое и стандартное отклонение:

Теперь он подставляется в формулу для коэффициента вариации:

Ответ: коэффициент вариации переменного веса 10 человек в почтовом отделении составляет 19,74%, при среднем весе 73,80 кг и стандартном отклонении 14,57 кг.

Упражнение 2.

В одном городе измеряется рост 9 465 детей во всех школах первого класса, средний рост составляет 109,90 см со стандартным отклонением 13,59 см. Рассчитайте коэффициент вариации.

Ответ: коэффициент вариации переменного роста первоклассников города составляет 12,37%.

Упражнение 3.

Смотритель парка подозревает, что популяции черных и белых кроликов в его парке не имеют одинаковой изменчивости в размерах. Чтобы продемонстрировать это, он взял образцы по 25 кроликов из каждой популяции и получил следующие результаты:

— Белые кролики: средний вес 7,65 кг и стандартное отклонение 2,55 кг.
-Черные кролики: средний вес 6,00 кг и стандартное отклонение 2,43 кг.

Смотритель парка прав? Ответ на гипотезу смотрителя парка можно получить с помощью коэффициента вариации:

Ответ: коэффициент вариации веса черных кроликов почти на 7% больше, чем у белых кроликов, поэтому можно сказать, что смотритель парка прав в своем подозрении, что вариабельность веса двух популяций кроликов не равны.

Ссылки

37 животных в Чили под угрозой исчезновения

18 продуктов, богатых витамином К (натуральный)

Источник

Коэффициент вариации в статистике: примеры расчета

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает чтоКак доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Среднее арифметическое

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться. Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического. Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает чтоЕсли применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Стандартное отклонение

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Коэффициент вариации

Среднее квадратичное отклонение хорошо работает с рядами, в которых разброс значений не очень велик (это хорошо прослеживалось на примере роста, где интервал был всего 18 см). Если бы ряд наших измерений был значительнее, а варьирование роста было сильнее, то стандартное отклонение стало непоказательным и нам потребовался бы критерий, который может отразить разброс в относительных единицах (т. е. в процентах, относительно средней величины).

Для этих целей предусмотрены абсолютные и относительные показатели вариации в статистике, характеризующие вариационные масштабы:

Квадратический коэффициент вариации (обозначается как Vσ) – это отношение среднеквадратичного отклонения к среднеарифметическому значению, выраженное в процентах.

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Для нашего примера со студентами, определить Vσ несложно — он будет равен 3,18%. Основная закономерность – чем больше будет изменяться значение коэффициента, тем больше разброс вокруг среднего значения и тем менее однородна выборка.

Преимущество коэффициента вариации в том, что он показывает однородность значений (асимметрия) в ряду наших измерений, кроме того, на него не оказывают влияния масштаб и единицы измерения. Эти факторы делают коэффициент вариации особенно популярным в биомедицинских исследованиях. Будет считаться, что эксцесс значения Vσ =33% отделяет однородные выборки от неоднородных.

Если найти в ряду значений роста (первый пример) максимальное и минимальное значения, то получим размах вариации (обозначается как R, иногда ещё называется колеблемостью). В нашем примере – это значение будет равно 18 см. Эта характеристика используется для расчёта коэффициента осцилляции:

Коэффициент осцилляции – показывает как размах вариации будет относиться к среднему арифметическому ряда в процентном отношении.

Коэффициент вариации признака равен 49 это означает что. Смотреть фото Коэффициент вариации признака равен 49 это означает что. Смотреть картинку Коэффициент вариации признака равен 49 это означает что. Картинка про Коэффициент вариации признака равен 49 это означает что. Фото Коэффициент вариации признака равен 49 это означает что

Расчёты в Microsoft Ecxel 2016

Можно рассчитать описанные в статье статистические показатели в программе Microsoft Excel 2016, через специальные функции в программе. Необходимая информация приведена в таблице:

Наименование показателяРасчёт в Excel 2016*
Среднее арифметическое=СРГАРМ(A1:A10)
Дисперсия=ДИСП.В(A1:A10)
Среднеквадратический показатель=СТАНДОТКЛОН.В(A1:A10)
Коэффициент вариации=СТАНДОТКЛОН.Г(A1:A10)/СРЗНАЧ(A1:A10)
Коэффициент осцилляции=(МАКС(A1:A10)-МИН(A1:A10))/СРЗНАЧ(A1:A10)

* в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию:

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила коэффициент вариации, который является мерой однородности данных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *