Конечная координата в чем измеряется

Кинематика

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч и у вас нет никаких препятствий на пути, то вы скорее всего будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

Векторные величины (определяются значением и направлением)

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики. Скорость — это векторная физическая величина, характеризующая быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

→ →
V = S/t

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]

В чем разница между перемещением и путем?

Перемещение — это вектор, проведенный из начальной точки в конечную, а путь — это длина траектории.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости

V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уравнение движения

Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) = x0 + vxt

x(t) — искомая координата [м]

x0 — начальная координата [м]

vx — скорость тела в данный момент времени [м/с]

t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата [м]

x0 — начальная координата [м]

vx — скорость тела в данный момент времени [м/с]

t — момент времени [с]

Графики

Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.

В видео ниже я рассказываю, как строить графики кинематических величин и зачем они нужны.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

То есть прямолинейное движение — это движение с ускорением по прямой линии, движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении

Уравнение движения для равноускоренного движения

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

x(t) — искомая координата [м]

x0 — начальная координата [м]

v0x — начальная скорость тела в данный момент времени [м/с]

Для данного процесса также важно уметь находить конечную скорость. Это часто упрощает решение задач. Она находится по формуле

Формула конечной скорости

→ →
v = v0 + at


v — конечная скорость тела [м/с]

v0 — начальная скорость тела [м/с]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, v0 = 0. Значит

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

a = v/t = 60/0,05 = 1200 км/ч^2

Теперь возьмем уравнение движения.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

x = 1200*0,5^2/2 = (1200*0,5^2)/2 = 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Графики

Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже.

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с^2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с^2.

И кому же верить?

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела, когда тело движется вокруг некоторой точки. Очень важно разделить движение по окружности и вращение тела.

При вращательном движении тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами.

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги. Это очень похоже на равномерное движение, только в данном случае мы имеем дело с дугами.

При движении по окружности тело двигается вокруг одной точки, а при вращении — все точки тела движутся вокруг оси вращения.

В видеролике ниже рассказано про ускорение при криволинейном движении. Оно складывается из двух составляющих — нормальной и тангенциальной. При равномерном движении по окружности тангенциальная составляющая отсутствует, остается нормальная, которую мы в данном случае называем центростремительной.

Центростремительное ускорение

При движении по окружности модуль скорости постоянен, а вот направление скорости постоянно меняется. За изменение направления скорости отвечает центростремительное ускорение.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Центростремительное ускорение

aц = v^2/R

aц — центростремительное ускорение [м/с^2]

R — радиус окружности [м]

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Задачка

Мотоцикл движется по закруглённому участку дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение мотоцикла?

Решение:

Возьмем формулу центростремительного ускорения тела

В условии задачи скорость дана в километрах в час, а радиус в метрах. Значит, нужно перевести скорость в м/с, чтобы избежать коллапса в решении.

Теперь можно подставить значения в формулу:

aц = 10^2/120 = 100/120 = 10/12 ≃ 0,83 м/с^2

Ответ: центростремительное ускорение мотоциклиста равно 0,83 м/с^2

Источник

Кинематика материальной точки. Движение под углом к горизонту

Как определить положение тела в пространстве? И для чего нужны координаты?

Школьный курс физики начинается с раздела кинематика. Именно она закладывает фундамент для дальнейшего изучения, все остальные разделы так или иначе будут соприкасаться с этим разделом.

Что же такое кинематика? Это раздел физики, который изучает движение некоторого тела в пространстве. При это мы НЕ рассматриваем, что вызывает это движение, что является его причиной. У нас просто есть какое-то двигающееся тело и мы пытаемся его изучить. А на вопрос почему происходит движение, кинематика нам ответа не дает, это мы будем изучать в следующих разделах физики.

Начнем с простого вопроса – что такое «тело»? Это может быть все, что угодно – машина, самолет, мячик, капля воды, планета и т.д., то есть любой движущийся объект. Любое тело в школьной физике мы будем представлять в виде материальной точки.

Определение. Материальная точка – это тело, размерами которого мы можем пренебречь в данной задаче.

Мы просто договариваемся, что любой объект, будь то ракета или песчинка с пляжа, мы представляем в виде точки. Это необходимо для того, чтобы размеры тела не оказывали влияния на наши задачи. Так, например, автобус, двигающийся из Москвы в Санкт-Петербург, можно считать материальной точкой. Его размеры очень малы по сравнению с расстоянием между этими городами. Но движение пассажиров при выходе из автобуса уже нельзя считать материальной точкой, потому что пассажиры относительно автобуса не такие уж и маленькие. Такое школьное допущение (а в физике допущений будет много) упростит нам жизнь. При более глубоком изучении физики вы будете учитывать все эти допущения, в том числе и размеры тела, но в школе вам это, как правило, не нужно.

Задача кинематики – предсказать или описать при помощи законов физики, как этот объект будет двигаться в будущем, например, через час, если ничего не изменится.

Зачем нам это? Очень просто: если мы знаем, по каким законам двигается машина, мы легко сможем предсказать будущее и узнать, где она будет через какое-то время и с какой скоростью будет двигаться. Естественно, мы можем точно так же предсказывать движение брошенного камня и любых других объектов. Например, зная начальную скорость камня и как вы его кинули, можно предсказать, как далеко или высоко он улетит, или через сколько времени и с какой скоростью он упадет на землю.

Траектория, путь и перемещение. Что это такое и чем они отличаются?

Перед тем, как писать формулы, познакомимся еще с несколькими определениями, которые нам понадобятся в дальнейшем. Представим, что человек идет из пункта \(А\) в пункт \(В\) (см Рис.1.).

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Разберемся подробнее на примере. Если вы ходите по комнате с шагомером туда-сюда и вернетесь в итоге в исходную точку, то ваше перемещение будет равно 0, а путь будет расстоянием, которое вы находили, его покажет шагомер.

Что такое координаты и зачем они нужны?

Все это звучит здорово, но как нам определить положение тела в пространстве? Для этого люди придумали очень удобную штуку, которая называется координатная плоскость. С этим понятием вы должны были сталкиваться в курсе алгебры – построение графиков в осях \(х\) и \(y\). Помните, у вас были функции типа \(y=x^2-3\) и нужно было построить график этой функции по точкам? Вы брали какие-то значения \(x\) подставляли в \(y=x^2-3\) и получали значение \(y\). Потом отмечали получившуюся точку на координатной плоскости. Именно эта плоскость нас и будет интересовать.

Координаты используются людьми повсюду. Например, вся поверхность Земли расчерчена линиями, которые называются долгота и широта. Этих линий очень много, но указав пересечение некоторой долготы (37) с какой-то широтой (55), я укажу вполне конкретную точку на земной поверхности – это примерное расположение города Москва (37;55). Именно такой способ используется для определения положения любого объекта на Земле в географических картах и навигаторах – город, озеро, здание, машина, человек и т.д.

Для начала давайте рассмотрим одномерное движение – это такое движение, при котором машина может двигаться только вперед по дороге или назад, никуда свернуть она не может. (Рис.2.). Наложим на нашу дорогу ось Х, направленную вправо, как на рисунке. Теперь вся наша дорога размечена координатами. И мы можем определить положение машины, просто сказав ее координату. Начало координат мы можем выбрать как угодно, пусть оно будет в точке О. Тогда на рисунке наша машина находится в начальной координате \(x_0=3\). Из этой точки она может поехать влево (координата будет уменьшаться) или вправо (координата будет увеличиваться).

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Расстояние можно измерять в различных единицах измерения: километры, метры, сантиметры, миллиметры и т.д. Пусть все координаты у нас измеряются в метрах, тогда можно сказать, что на рисунке машина находится на расстоянии 3 метра от точки О.

Итак, мы научились определять положение тела в пространстве при помощи координат.

Что такое скорость?

На интуитивном уровне это понятно. Но давайте попробуем вникнуть поглубже. В чем всегда измеряется скорость? В автомобиле это обычно километры в час (км/ч), измеряется при помощи спидометра. То есть спидометр машины показывает, сколько километров проедет машина за один час, если не будет менять скорость. Точно так же скорость можно измерять в метрах в секунду (м/с), километрах в секунду (км/с) и т.д. Значит, если я умножу скорость на количество часов, которые едет машина с этой скоростью, то получу расстояние, пройденное машиной за это время. Можно записать в виде известной формулы движения с постоянной скоростью:

Итак, при движении с постоянной скоростью \(V\), можно посчитать расстояние \(S\), которое проходит тело за время \(t\).

Теперь давайте предположим, что машина двигается с постоянной скоростью 1 (м/с) влево из начальной точки с координатой \(x_0=3(м)\). Это означает, что машина за 1 секунду сдвинется на \(S=V*t=1*1=1(м)\) метр влево, то есть окажется в точке с координатой \(2\) (м). Через 2 секунды она пройдет расстояние \(S=V*t=1*2=2(м)\) и попадет в координату \(1\)(м), а через 6 секунд на \(S=V*t=1*6=6(м)\) и окажется в координате \(-3\)(м).

Скорость кроме величины еще имеет направление – в нашем случае это означает, что если машина едет вправо (туда же, куда направлена ось \(х\)), то скорость будет положительна, а если влево (в противоположную сторону направлению оси \(х\)), то скорость будет отрицательна.

Все, что имеет величину и направление, называется вектором. То есть скорость ни что иное, как вектор. Вектор – это ключевое понятие физики. Мы часто будем сталкиваться с величинами, у которых кроме числа есть еще и направление – ускорение, сила.

Немного отвлечемся, и обсудим, что такое вектор.

Вектор – это математический объект, у которого есть величина и направление.

В геометрии вектор – это направленный отрезок. Он имеет величину, равную длине отрезка, и направление.

Например, в случае двигающегося автомобиля принято показывать его направление движения стрелкой, а длина этой стрелки обычно указывает на величину скорости по модулю. Модуль, напомню, все отрицательные величины превращает в положительные. Чем больше длина стрелки, тем больше скорость машины. (См.Рис.3.)

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

В случае 1 стрелка у красной машины указывает нам на то, что автомобиль двигается вправо. Стрелка подписана сверху \(\vec<|V_1|>=90(км/ч)\). Эта запись означает, что величина скорости красной машины по модулю равна \(90(км/ч)\).

Если я напишу вектор скорости красной машины без модуля, то он будет выглядеть вот так:

Знак плюс указывает на то, что скорость машины сонаправлена с выбранной нами осью \(х\).

В случае 2 синяя машина двигается влево. Ее вектор скорости запишется так:

Знак минус указывает на то, что машина едет в противоположную сторону оси \(х\).

Как видите, по одной только записи вектора можно сразу сказать, куда едет машина и с какой скоростью – это очень удобно. Знак указывает на направление, а число – на величину.

Обратите внимание, что у красной машины вектор скорости длиннее, чем у синей, это означает, что красная едет быстрее. Не глядя на числа, мы можем с уверенностью сказать это, посмотрев на рисунок. Так принято обозначать. Это тоже удобно.

Равномерное движение

Любое движение с постоянной скоростью называется равномерным движением. Все, что мы рассматривали выше – это примеры равномерного движения.

Теперь мы готовы составить первые уравнения, описывающие равномерное движение. В кинематике нас будет интересовать уравнение, которое описывает положение тела в пространстве в зависимости от времени (изменение координаты тела со временем). Оно выглядит так:

\(x_0\) – это начальная координата тела, где оно находилось в момент времени \(t=0\). Например, на рис.2. начальная координата автомобиля \(x_0=3(м)\).

\(V\) – это скорость, с которой двигается тело. \(t\) – это время, которое прошло с момента начала движения.

\(x(t)=x_<конечная>\) – это конечная координата, то есть координата, где окажется тело через время \(t\). Я написал \(x(t)\), чтобы показать, что координата тела зависит от времени, ведь в разные моменты времени двигающееся тело находится в разных точках.

Разберем на примере, как работает это уравнение.

Автомобиль начал движение из координаты \(x_0=-3(м)\) со скоростью \(V=5(м/с)\) вправо. Где будет автомобиль через 3 секунды? Через какое время автомобиль окажется в точке с координатой \(x=12(м)\)?

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Решение: Первым делом всегда рисуем рисунок, он поможет правильно расставить знаки в уравнениях и лучше представить задачу. Чтобы ответить на поставленные вопросы, воспользуемся уравнением для координаты при равномерном движении \(x(t)=x_0+V*t.\)

Подставим известные величины:

Получили уравнение, которое полностью задает движение автомобиля.

Действительно, если в это уравнение подставить некоторое время вместо \(t\), то можно узнать координату, где находится автомобиль в различные моменты времени.

Например, если \(t=0\), момент начала движения:

Логично, что в начале автомобиль находился в координате \(x_0=-3\). Чтобы узнать, где он будет через секунду, подставим \(t=1(c)\):

Отрицательное время подставлять нет смысла, так как время не может быть отрицательным. А координата и скорость могут.

Теперь вспоминаем про задачу. Нам нужно узнать, где будет машина через 3 секунды. Просто подставляем в уравнение \(t=3(с)\):

А как понять, через сколько по времени машина окажется в координате \(x(t)=12(м)\)? Подставим:

Осталось решить простое линейное уравнение:

Равноускоренное движение

Если скорость не меняется, то все понятно. А что делать если скорость непостоянна?

В школе рассматривается случай, когда скорость у тела изменяется (увеличивается или уменьшается) равномерно, то есть за каждую следующую секунду скорость увеличивается/уменьшается на одну и ту же величину. Такое движение называют равноускоренным или равнозамедленным соответственно.

Пример такого движения. Представьте, что лыжник скатывается с горки из состояния покоя, при этом его скорость постоянно увеличивается, например, на 2 м/с ежесекундно. То есть:

Величина, на которую ежесекундно увеличивается/уменьшается скорость, называется ускорением и обозначается буквой \(a\). Ускорение измеряется в \(\frac<м><с^2>\).

Разумеется, в жизни бывают случаи, когда скорость изменяется неравномерно. Но в школьном курсе такие задачи крайне редкие, и мы их рассматривать не будем.

Как выглядит уравнение, описывающие равноускоренное движение?

По сравнению с равномерным движением, у нас добавилось еще одно слагаемое \(\frac<2>\), которое отвечает за ускоренность/замедленность движения.

Так как скорость теперь переменная величина, для нее тоже можно записать уравнение:

Уравнения для координаты и для скорости при равноускоренном движении являются основными уравнениями всей школьной кинематики. Если в них хорошо разобраться, то больше никаких формул учить не нужно. Все выводится из них. Я рекомендую пользоваться только этими двумя уравнениями и не забивать себе голову ничем посторонним.

Внимание! Вообще говоря, ускорение — это векторная величина, так же, как и скорость. Мы это обсуждали в начале темы. И помним, что если вектор сонаправлен с выбранным нами направлением оси координат, то ускорение положительно, а если нет, то отрицательно. Если же вектора скорости и ускорения направлены в одну сторону, то тело ускоряется. А если в разные, то тормозит. Посмотрите на рисунки:

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

В случае а) скорость сонаправлена с осью х, значит она будет положительна. Ускорение тоже сонаправлено с осью х, значит оно положительно. А раз вектора скорости и ускорения направлены в одну сторону, то это значит, что тело ускоряется.

Случай б): скорость положительна, ускорение отрицательно. Раз вектор скорости и вектор ускорения направлены в разные стороны, значит тело замедляется.

Случай в): скорость и ускорение отрицательны, но сонаправлены – тело ускоряется.

Случай г): скорость отрицательна, ускорение положительно – тело замедляется.

Со знаками разобрались, теперь давайте разберем пример.

Лыжник скатывается с горки с нулевой начальной скоростью \((V_0=0(м/с))\). Через 5 секунд после начала движения его скорость была \(V(t=5(c))=15(м/с)\). Определите с каким ускорением движется лыжник и какое расстояние он проедет за 10 секунд?

Решение: Рисуем рисунок, чтобы представить, что происходит, и правильно расставить знаки. Ось х выбираем, как угодно. Я направил вниз.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Как мы уже обсуждали выше, у нас есть всего два уравнения – для координаты и для скорости, которые полностью описывают любое движение:

Так как нам даны начальная и конечная скорости, то разумно воспользоваться уравнением для скорости. Не забываем про знаки скорости и ускорения – оба вектора сонаправлены с выбранной мною осью х, а значит, и скорость, и ускорение будут в уравнениях положительны.

Работа с графиками в кинематике

В ЕГЭ по физике кинематика часто встречается в самом первом задании и, как правило, там задача с графиками. Графики помогают нам визуально описывать поведение одной некоторой величины в зависимости от другой. В школе вы должны были часто строить графики зависимостей \(y\) от \(x\). В кинематике же обычно строят графики зависимости координаты или скорости от времени. Давайте построим пару таких графиков и обсудим, как их читать.

Конечная координата в чем измеряется. Смотреть фото Конечная координата в чем измеряется. Смотреть картинку Конечная координата в чем измеряется. Картинка про Конечная координата в чем измеряется. Фото Конечная координата в чем измеряется

Главное, нужно понять, что перед вами не траектория и не картинка, на которой изображено, как движется тело. Это зависимость одной физической величины от другой. На наших рисунках изображены графики зависимостей координаты и скорости от времени некоторого объекта (пусть это будет велосипедист) при различных видах движения. Например, на графике \((в)\) НЕ показано движение некоторого объекта в гору, а просто координата по мере движения увеличивается.

Движение в поле тяжести Земли

Теперь рассмотрим движение объектов в поле тяжести нашей планеты Земли. Любое тело, свободно падающее (отпущенное с некоторой высоты без начальной скорости) на Земле, будет двигаться с ускорением свободного падения \(g=9.8(м/с^2)\). Важно помнить, что \(g\) всегда направлено к центру Земли.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *