Конфигурация объекта по высоте что это значит

КОНФИГУРАЦИЯ

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

В чем заключается вклад архитектора при проектировании сейсмостойких конструкций зданий и сооружений и почему часто результаты его творчества создают большие трудности для работы инженера?

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Ответ следующий: архитектор создает и видоизменяет форму здания, т.е. разрабатывает его архитектурное решение, его конфигурацию, которая обычно определяется размерами и формой здания в плане.

Определяя конфигурацию здания, архитектор оказывает непосредственное влияние на выбор системы несущих элементов конструкции. При этом часто выход из строя отдельных конструктивных деталей, приводящий к серьезным повреждениям или потере устойчивости всего здания, может предопределяться его конфигурацией. Другими словами, неудачная конфигурация здания (как в целом, так и в сочетании отдельных объектов) при воздействии сейсмических нагрузок может привести к перегрузке некоторых конструктивных элементов или узлов и их разрушению. Говоря о значимости конфигурации здания, не имеется в виду умаление роли инженерного проектирования и технологий производства строительных работ; то и другое взаимосвязанные процессы одинаковой важности, обеспечивающие надежность и эффективность эксплуатации здания и сооружения. Поэтому за проектирование сейсмостойких конструкций в равной степени отвечают как инженер, так и архитектор.

Во время землетрясения сейсмическое воздействие поражает все здание, не делая различия в тех элементах, которые разработаны инженером и которые созданы архитектором. Форма здания, симметричное расположение его элементов и генеральный план должны создаваться на стадии концептуального проектирования. Это не менее важно, чем точное определение усилий в соответствии с предлагаемыми строительными нормами.

Проблема архитектора сводится к тому, следует ли проектировать здание исходя из требований функционального, социального и эстетического характера и затем эксплуатировать его в условиях полученной конструктивной надежности, или процесс проектирования для сейсмических районов должен изначально включать рассмотрение вопросов повышенной устойчивости и общей целостности здания, которые определяют параметры объемов, симметричность, массу элементов, модульную систему и другие факторы, оказывающие влияние на сейсмостойкость конструкций. При принятии второго пути не ясно, как архитекторы, инженеры и другие причастные лица могут создать общие концепции проектирования зданий и сооружений с учетом воздействия явления, которое повторяется в своей наиболее разрушительной форме через значительные периоды времени, в течение которых многие из принятых расчетных параметров могут измениться.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Рис 10.4.2. Изображение понятия «конструкции нерегулярной формы и рамные каркасы»:

Отсюда следует два важных вывода:

1. Для некоторых районов земного шара требуется пересмотр некоторых определяющих критериев, принятых за основу процесса проектирования сейсмостойких конструкций, в результате чего влияние редкого, но возможного сейсмического воздействия можно будет учитывать наряду с другими расчетными параметрами.

2. Решения, принимаемые в отношении конструктивных особенностей зданий, должны быть простыми с возможностью многократного повторения; элементы конструкций должны обладать максимальной, симметрией, прямолинейностью и неразрезностью.

Размеры зданий.Во время землетрясения в г. Анкоридж, 1964, небольшие дома, расположенные в районе оползней, в результате воздействия сильных толчков переместились на несколько метров в различных направлениях, но благодаря небольшой массе и размеру не были существенно повреждены, хотя их конструкция проектировалась без расчета на воздействие сейсмических нагрузок. Для малых зданий с деревянным каркасом влияние конфигурации на работу при сейсмическом воздействии может быть невелико. Причина в том, что малый дом с деревянным каркасом имеет небольшую массу, и возникающие ней силы инерции будут также небольшими. Кроме того, в таких домах размеры пролетов малы относительно площади пола; прилагаемая к конструкциям здания нагрузка распределяется среди большого количества стеновых элементов, а в случае необходимости, объемы ремонта будут невелики.

При сравнении конструкций зданий различных размеров выяснилось, что нарушение общих принципов и основ разработки объемно-планировочного решения неизменно вызывает существенное увеличение стоимости, а по мере роста воздействующих нагрузок работа конструкций ухудшается по сравнению с эквивалентным зданием с лучшей конфигурацией. При увеличении абсолютного размера сооружения количество возможных альтернатив его конструктивного решения уменьшается. Мост пролетом в 90 м можно построить в виде балочной, арочной, висячей конструкции и со сквозными фермами; а мост пролетом в 900 м может быть только подвесным. Нельзя изменить габариты сооружения и размер элементов и сохранить при этом прежнюю работу конструкции.

Высота здания.На первый взгляд увеличение высоты здания может показаться эквивалентным увеличению пролета консольной балки. Но это не так. С увеличением высоты здания обычно растет и значение периода собственных колебаний здания, а изменение периода колебаний означает изменение (в верхнем или нижнем уровне) ответных реакций здания и величины соответствующих усилий. Обычно землетрясения вызывают интенсивные перемещения грунта с высоким ускорением и периодом основных колебаний не более 0,5 с. Следовательно, здание высотой более 20 этажей с основным периодом колебаний более 1 с будет испытывать меньшее ускорение массы, чем здание высотой в 5-10 этажей с периодом колебаний 0,5 с.

Период собственных колебаний зданий является функцией не только высоты, но также гибкости, высоты этажей, типа конструктивной системы, используемого строительного материала, распределения масс. Поэтому изменение размера здания может одновременно вызвать изменение периодов собственных колебаний, что соответственно способствует увеличению или уменьшению величин сейсмических нагрузок.

Горизонтальные размеры.Кроме опрокидывающих усилий, возрастающих с увеличением высоты зданий и сооружений, при действии землетрясения отрицательно сказываются слишком большие размеры плана. Если план велик, даже если он симметричен и имеет простую форму, здание как единое целое не всегда может оказывать сопротивление воздействию сейсмических волн. При определении сейсмических воздействий обычно исходят из предположения, что сооружение колеблется как система, у которой на одном и том же уровне в любой момент времени все точки плана находятся в одинаковой фазе по перемещениям, скорости и ускорениям при их одинаковой амплитуде. В действительности, прохождение сейсмических волн не мгновенно, а происходит с определенной конечной скоростью, зависящей от плотности грунта и характеристик конструкции, различные участки основания по длине здания колеблются асинхронно с разными величинами ускорений, что вызывает в здании дополнительные продольные усилия сжатия-растяжения и горизонтального сдвига. При прочих равных других условиях эти усилия будут тем более существенны, чем большей будет длина сооружения.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Рис. 10.4.3. Симметрия в плане: а – симметрия относительно двух или более осей;

Симметрия.Здание или сооружение считается симметричным относительно двух осей в плане, если его геометрические параметры идентичны с каждой стороны рассматриваемой оси. Симметричность здания может быть по одной оси (рис. 12.4.3). Конструктивная симметрия означает совпадение местоположения центра тяжести и центра жесткостей.

Единственное указание, включенное во все нормативные документы по этому вопросу, заключается в выдерживании симметрии форм, асимметричность способствует возникновению эксцентриситета между центром тяжести и центром жесткости, в результате чего появляется кручение. Кручение может также возникнуть и по другим причинам, например, при неравномерном распределении массы в сооружении, симметричном в плане; однако асимметричность решения плана почти всегда ведет к кручению. Кроме того, несимметричность конструкций часто приводит к концентрации напряжений. Концентрация напряжений возникает у надрезов входящих углов зданий. Но решение плана здания с входящими углами не обязательно должно быть асимметричным (здание крестообразное в плане может иметь симметричную форму).

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значитРис. 10.4.4. Планы зданий

Но «степень» выпуклости может быть разной (рис. 10.4.4). При слишком коротких крыльях зданий (план слева) указанная конфигурация стремится к аппроксимации простой симметричной формы квадрата. При слишком большой длине крыльев (план справа) входящие углы способствуют концентрации значительных напряжений и возникновению кручения. Поэтому при выборе в качестве критерия проектирования параметров надежности и экономичности рекомендуют использовать такие симметричные формы здания, которые не подвергаются воздействию кручения.

Симметрия определяется не только решением плана всего здания, но и отдельными элементами и узлами, создаваемыми в процессе проектирования и строительства. Изучение работы конструкций зданий в период предшествующих землетрясений указывает на сравнительно высокую их чувствительность к небольшим изменениям симметричности плана. В особенности это относится к конструктивным решениям, предусматривающим использование несущих диафрагм и стволов (ядер жесткости). Иногда основные конструктивные элементы, такие, как ядра жесткости, имеют несимметричное размещение в общей симметричной конфигурации здания. В этом случае можно применить термин «псевдосимметрия», который подчеркивает, что в понятие симметрии вкладывается не только симметрия геометрически формы плана и расположения наружных элементов, но и внутренняя компоновка несущих и ненесущих элементов конструкций зданий и сооружений. С другой стороны, для здания с несимметричным решением плана конструктивная система может быть спроектирована таким образом, что его динамическая реакция соответствует симметричному расположению элементов, а возможность появления кручения сведена до минимума. И если несимметричный план здания нельзя изменить на симметричный, то именно такое решение и должно применяться (рис. 10.4.5).

Конструктивные решения (плотность плана).Размер и количество несущих элементов в зданиях и сооружениях, построенных в предыдущие века, значительно превышают те, которые предусматриваются в современных архитектурно-планировочных решениях. Постоянное совершенствование основ конструктивного расчета, эстетические требования способствуют продолжению разработок по уменьшению размеров и количества несущих элементов. В зданиях повышенной этажности с большой гибкостью наблюдаются колебания, соответствующие более высоким тонам, и при этом максимальные усилия могут возникнуть там, где их появление казалось бы не очевидно, поскольку обычно наиболее значительные нагрузки при землетрясении действуют на уровне основания грунта. Конструкции нижнего этажа воспринимают вертикальные и горизонтальные нагрузки, действующие в верхних уровнях. В то же время эстетические требования, предъявляемые к нижнему этажу, определяют максимальное освобождение планировочного пространства. В качестве хорошо известных примеров такого решения плана первого этажа следует привести следующие: консольно нависающая коробка здания, здание со свободным первым этажом (опирающееся на стойки), жилой дом или гостиница с просторным помещением гаража в нижнем этаже (с колоннами, расположенными на большом расстоянии друг от друга) и т.д.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит
Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Конструктивные решения таких зданий не отвечают требованиям оптимальной сейсмостойкости конфигурации, которая требует иметь в нижнем ярусе здания мощные вертикальные несущие элементы для восприятия сейсмических нагрузок. Критерии эстетического восприятия, таким образом, входят в противоречие с требованиями сейсмостойкого проектирования.

Интересной статистической оценкой конструктивно-планировочного решения нижнего этажа является плотность конструктивной схемы (плана), определяемая отношением полной площади вертикальных несущих элементов (колонн, стен, связей жесткости) к полной площади пола. В типовом современном здании величина этого отношения является минимальной для рамных каркасов даже с учетом огнезащиты колонн, если конструкции выполнены в металле. Например, типовое 10- или 20-этажное здание с несущим металлическим или железобетонным рамным каркасом контактирует с поверхностью грунта своими колоннами по площади, равной 1% или менее от площади перекрытия; в случае комбинированной конструкции со связевым каркасом площадь несущих элементов на уровне грунта составит не более 2%. Для многоэтажных административных зданий, конструкции которых включают большое количество стен-диафрагм, это отношение не превышает 3%. Плотность конструктивного плана оснований зданий, построенных в предшествующие столетия, существенно отличается от современной: так, например, для 16-этажного здания Монаднок Билдинг, стены которого выполнены из кирпича толщиной 1,83 м, это отношение равно 15% (рис. 10.4.8).

Специалисты, работающие в области реконструкции зданий, пострадавшихво время землетрясений, знают о том, что старые здания имеют большую прочность и в большинстве случаев остаются почти неповрежденными после воздействия сейсмических нагрузок. Основной фактор, обеспечивающий требуемую сейсмостойкость старых зданий относится, как правило, к ихархитектурно-планировочному решению (конфигурации). Основной объем строительного материалав таком здании находится в нижней части, а конструкции верхних ярусов обеспечивают наиболее рациональные траектории передачи нагрузки. Простые конструктивно логичные конфигурации часто способствуют сохранности во время землетрясений таких зданий, которые по прогнозам должны были бы разрушиться.

Понятием, аналогичным плотности конструктивной схемы, является количественный показатель протяженности стен здания (т.е. связь между длиной стен зданий каркасной системы и объемом повреждений от землетрясения). Выявлено:

— при объеме проемов в наружных стенах свыше 40% возникали повреждения стен;

— в каркасных конструкциях с небольшим количеством стен, воспринимающих сейсмическую нагрузку, объем повреждений зависит от количества стен (в самих стенах возникает много трещин от сдвига, но в колоннах и балках каркаса были только незначительные трещины).

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Рис. 10.4.9. Отношение длины стенового заполнения к площади пола

Источник

Проектирование высотных зданий — специфика

По степени сложности проектирование высотных зданий, а также возведение их превосходят мосты и тоннели, главным образом за счет многократного преобладания высоты над площадью основания, что создает значительные нагрузки на несущие конструкции.

Огромная высота небоскреба приводит к значительно превосходящей типичную для среднеэтажной застройки степени воздействия природных факторов, таких как солнечная радиация и ветровая нагрузка, зачастую превышающая суммарный вес сооружения. Влияние оказывают и общая геологическая ситуация (качество подстилающих грунтов, сейсмическая опасность региона, наличие карстовых разломов), и ряд техногенных факторов (вибрации, шумы, аварии, пожары, диверсионные акты, локальные разрушения). Проектирование высотных зданий – это решение комплекса градостроительных, природно-климатических, геологических, архитектурно-планировочных, конструктивных задач.

Должны быть решены и инженерные вопросы (вентиляция, отопление, водоснабжение, канализация, электрика и системы их управления), вопросы комплексной безопасности проживания, управления и мониторинга конструкций, а также меры, направленные на снижение негативного психологического воздействия на человека.

Каждая высотка сложна и уникальна, и ее сложность возрастает пропорционально ее высоте. В работе над ней принимают участие специалисты из разных областей. Например, в проектировании высотного здания Commerzbank принимали участие свыше 400 исследовательских групп. Основная ответственность ложится на архитекторов, координирующих работу. Поэтому во всем мире при архитектурных школах создаются специальные факультеты, готовящие специалистов по небоскребам. Существуют и проектные организации, специализирующиеся на высотных зданиях, – архитектурные Skidmore, Owings and Merrill, De Stefano and Partners, Foster and Partners, конструкторские Ove Arup and Partners, Thornton Tomasetti Groupe, Cantor Seinuk Group, инженерные RSE Engineering, Flack & Kurtz Consulting Engineers, строительная Turner Construction.

ГЕОЛОГИЯ И ГРУНТЫ

Решение о строительстве высотного здания во многом зависит от качества грунта на участке и его несущей способности. Основной фактор риска в строительстве высоток – оценка несущей способности грунта. При ее анализе и расчете фундаментных плит необходимо учитывать специфику этого типа зданий. Один и тот же грунт в зависимости от неоднородности строения, от технологии возведения может иметь значения «модуля деформации», в 2–5 раз различающиеся между собой. Расчет подземной части высотки выполняется по двум предельным состояниям: по несущей способности и по деформациям (осадкам, кренам, прогибам и т.д.) с учетом принятой технологии возведения. Проектирование фундаментов учитывает особенности грунтов, результаты лабораторных и полевых испытаний, а также обследований окружающей застройки, ее оснований и фундаментов.

По современным способам расчетов основания армирования фундаментной плиты определяется достаточно приблизительно.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

В процессе строительства и эксплуатации продолжают измеряться значения контактных напряжений характерных точек, опорных сил, осадки. Если данные не соответствуют рас- четным, то проводится упрочнение грунта. По прогнозам экспертов, развитие геотехнических модельных вычислений, опыт применения эффективных строительных технологий со временем сведут к минимуму риски, связанные с непредсказуемостью поведения грунтов.

АЭРОДИНАМИКА

Можно сказать, что для высотных зданий влияние климата, ветра, изменение атмосферного давления являются экстремальными. До перехода на каркасную систему этой проблемы просто не существовало. Первые кирпичные высотки не были подвержены ветровому воздействию, в отличие от современных сооружений с большими пролетами несущих конструкций, навесными фасадами и предельной высотой.

Изучение воздействия ветра возможно с помощью физического или математического моделирования. Первое осуществляется при испытании в специальных аэродинамических трубах моделей в масштабе от 1:150 до 1:500. Это позволяет определять градостроительно-планировочные недостатки, чрезмерные нагрузки на конструкции, возможные места возникновения вибраций и шумов. Полученные результаты переносятся на реальный объект с корректирующими коэффициентами точности. При математическом моделировании учитываются скорость, направление и характер ветра, а также рельеф местности, плотность окружающей застройки, наличие поблизости леса и объемно-пространственная структура самого здания. Чем больше объектов находится рядом, тем больше высота, на которой достигается максимальная ветровая нагрузка. В области пограничного слоя воздуха скорость ветра может увеличиться в четыре раза. Под пограничным слоем понимается приземной слой атмосферы (в центре городов

460 м), в котором поверхность земли оказывает тормозящее воздействие на движущую массу воздуха, выше его скорость ветра постоянна.
Нагрузки, вызванные воздушными потоками повышенной скорости вокруг здания (турбулентные, круговые восходящие, всасывающие), создают колебания, сравнимые с 4- и даже 5-балльным землетрясением.

Кроме этого возникают неприятные звуки от перекоса конструкций, от проникания таких потоков в оконные щели, а также «завывание» вокруг здания. Наибольшее давление ветра наблюдается в центре вертикальной поверхности с наветренной стороны, где движение ветра практически прекращается. Давление постепенно уменьшается по мере возрастания скорости потока в направлении верха здания. Примерно с середины высоты 40% потоков воздуха начинает движение вниз вдоль фасада. Это может создавать ветровые нагрузки на уровне входа в здание даже большие, чем на высоте 100 м.

Существуют надежные методики учета аэродинамики, следуя которым проектировщик может добиться снижения ветровых нагрузок. Они должны применяться с самого начала проектирования высотных зданий, с постановки сооружения на участке в соответствии с розой ветров, с выбора объемно-пространственного решения.

РАЦИОНАЛЬНЫЕ ОБЪЕМНО-ПРОСТРАНСТВЕННЫЕ РЕШЕНИЯ

Наиболее рациональные формы высоток можно расположить в определенной последовательности, по степени уменьшения воздействия воздушных потоков на их конструкции. Абсолютным лидером является круглый план. Отсутствие выступов позволяет воздуху обтекать объем, не создавая при этом завихрений, появляющихся на углах прямоугольных в плане построек.

Примерами могут служить Marina City в Чикаго или Torre Agbar в Барселоне. Второе место принадлежит планам в форме, производной от круглой, – овальной, в форме линзы или капли. С середины ХХ века все больше высоток имеют подобные планы, что связано с увеличением их высоты, при которой оптимальный объем с точки зрения аэродинамики – не художественный прием, а необходимость. Переходная форма треугольника со скругленными углами чрезвычайно популярна благодаря своей пространственной жесткости. Прекрасный примердля подражания – Commerzbank во Франкфурте.

На третьем месте – столь же распространенные, как и сто лет назад, квадратные или ромбовидные планы. Это решение наиболее популярно для зданий не выше 60 этажей, поскольку они более подвержены горизонтальным нагрузкам. На четвертом месте – высотки, спаренные конструктивно или композиционно. Они, как правило, имеют круглую форму, как, например, Petronas Towers (Башни Петронас) в Куала-Лумпуре. Объединяющий их мост на 42-м этаже является фермой с подпорками, которая работает как стабилизатор колебательных деформаций обеих башен.
При помощи Г- и Н-образного плана можно добиться увеличения показателей прочности и жесткости сооружения. Однако в подобном типе зданий, которые в нашей классификации находятся на пятом месте, приходится размещать несколько лестнично-лифтовых узлов, что снижает выход полезной площади.

Замыкают ряд протяженные здания в виде пластины, дуги или волны. В последнее время, преимущественно в Китае, подобные сооружения делаются жилыми, их высота составляет 40–60 этажей. При этом архитекторам приходится искать альтернативные пути борьбы с воздушными потоками, вызванными огромной парусностью домов.

Стереотипные представления о небоскребах как о прямоугольных башнях, балансирующих на маленьком пятачке, зажатом среди соседних городских кварталов, на сегодня устарели. С тех пор, как высотки перестали быть только офисными зданиями и сделались жилыми домами, гостиницами, многофункциональными комплексами, они значительно расширили свою типологию. Их формы в зависимости от расположения и функции могут быть очень разнообразными – напоминающими парус, огурец, ворота или пагоду-переростка.

Аэродинамические нагрузки и распределение веса конструкций здания по вертикали требуют, как минимум, сохранения конфигурации по всей его высоте. С точки зрения устойчивости сужающаяся кверху форма предпочтительна. В этом случае сооружение занимает весь участок, а затем площадь этажей уменьшается. Это могут быть плавные изменения в силуэте здания по наклонной или дугообразной линии либо скачкообразные, уступчатые формы.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

В здании, имеющем форму пирамиды, наклон наружных плоскостей может увеличить жесткость конструкций на 10–50%. Уменьшить ветровую нагрузку можно с помощью переменного расширения и сужения горизонтального сечения здания. В этом случае для потоков воздуха создаются каналы, по которым им легче обтекать объем. Эту роль выполняют сквозные проемы, которые могут располагаться в разных частях здания. В любом случае испытания в аэродинамической трубе проектных моделей подобных сооружений должны проводиться с особой тщательностью, поскольку проемы могут оказывать усиливающее влияние на скорость ветра.

РАЦИОНАЛЬНЫЕ ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ

Вопросы ветровой нагрузки и связанные с ними оптимальные формы высоток неотделимы от их конструктивных решений, от которых зависит и рациональное распределение площадей каждого этажа. В планировке нужно максимально экономно и компактно разместить лестнично-лифтовые узлы. Для определения количества лифтов стоит рассчитать, сколько человек будет ими пользоваться в час пик, ведь максимальное время ожидания кабины может составлять не более 28 секунд. Архитектору также предстоит расположить несущие конструкции с учетом оптимального использования площади, по возможности освободив периметр от массивных элементов.

Конфигурация сооружения, расположение его центрального ядра и соотношение размеров ядра и здания – это базовые параметры в проектировании высотных зданий. Взаимосвязь планировочных, объемных и конструктивных показателей превращает придуманную архитектором форму в работающую схему.

Надежность и безопасность высотного здания зависит от принятых решений по сложнейшей системе, состоящей из подземной (фундаментов, отвечающих за восприятие и передачу суммарных нагрузок от здания на грунтовое основание) и наземной частей.

КОНСТРУКТИВНЫЕ РЕШЕНИЯ

Высотное здание – это вертикальная консоль, жестко закрепленная в фундаменте, поэтомуего надежность гарантирует устойчивость всего сооружения. Суммарная удельная нагрузка на основание может достигать 0,8–1 МПа. Основным правилом для высотных зданий является соблюдение симметричной центрированной нагрузки на фундамент.
В высотном строительстве большое распространение получили следующие фундаменты:

НЕСУЩИЕ КОНСТРУКЦИИ НАЗЕМНОЙ ЧАСТИ

Изначально применялись три основные конструктивные схемы высоток: каркасная, каркасно-ствольная и бескаркасная с параллельными несущими стенами. Со временем было разработано еще несколько типов: каркасная с диафрагмами жесткости, рамно-каркасная, бескаркасная с перекрестно-несущими стенами, ствольная, коробчатая (оболочковая), ствольно-коробчатая («труба в трубе» или «труба в ферме»).
Каркасные и рамно-каркасные системы применяют при высоте здания до 100–150 м. Схемы с перекрестно-несущими стенами, обеспечивающие большую жесткость, могут применяться в строительстве жилых домов и гостиниц до 40 этажей, поскольку им соответствует планировочная структура таких зданий. Стремление к достижению большей жесткости связано с резким увеличением массы сооружений и ограничением планировочных решений.

Для повышения жесткости конструкции и обеспечения свободной планировки применяют ствольные и каркасно-ствольные системы. Стволом, или ядром, как правило, является монолитно выполненный лестнично-лифтовый узел. Данная система обеспечивает необходимую жесткость здания до высоты в 50–60 этажей, поскольку его геометрия зависит от геометрии ядра, предельное соотношение ширины которого к высоте определяется как 1:6 (максимум 1:10). При этом ядро не должно занимать больше 20% от площади этажа.

Ограничение по высоте ствольных систем до 80–90 этажей преодолевается, если в качестве несущей оболочки выступает внешний периметр. Такие системы называются коробчатыми или оболочковыми. В них наружная несущая оболочка может выполняться в виде безраскосной и раскосной решетки из стали или железобетона. Безраскосная решетка не вызывает затруднений при размещении светопрозрачных ограждений по фасаду, но уступает раскосной в обеспечении жесткости конструкции. Диагональные связи-раскосы, образующие ствольно-коробчатые системы «труба в ферме», не позволяют применять пластические решения фасадов и требуют частого расположения несущих стоек по периметру сооружения.

Конфигурация объекта по высоте что это значит. Смотреть фото Конфигурация объекта по высоте что это значит. Смотреть картинку Конфигурация объекта по высоте что это значит. Картинка про Конфигурация объекта по высоте что это значит. Фото Конфигурация объекта по высоте что это значит

Система «труба в ферме» может эффективно применяться в зданиях свыше 100 этажей.
До высоты в 250–300 м возможна конструкция только с несущим стволом и опирающимися на него аутригерами-консолями (усиленными перекрытиями, способными воспринимать нагрузку от нескольких выше или ниже лежащих уровней и передающих ее на ядро), расположенными каждые 5–20 этажей. В зависимости от схемы аутригеры могут достигать высоты в несколько метров, в этом случае они располагаются в пределах технических этажей. Аутригеры должны быть затянуты в единую систему по периметру здания колоннами, работающими на растяжение, чтобы сократить колебательные ускорения наверху от ветровой нагрузки.

Каждая из схем экономически целесообразна для зданий определенной высоты или соотношения высоты и ширины. Показателем экономической эффективности является расход материала на изготовление несущих конструкций, поделенный на общую площадь. Таким образом, перед конструкторами стоит задача свести к минимуму вес сооружения при обеспечении необходимой надежности. Улучшить условия работы здания под нагрузкой и повысить его жесткость позволяет равномерное распределение вертикальных нагрузок на несущие элементы.

Если необходимость восприятия ветровых нагрузок требует повышения жесткости, сейсмические воздействия, напротив, диктуют повышение его гибкости, чтобы колебания гасились конструкцией без ее разрушения. Гибкость большинства высоток, коэффициент отношения высоты к ширине, обычно 1:8. Большие значения приводят к недопустимым колебаниям верха здания и необходимости использования демпфирующих элементов.

Эти колебания должны быть ограничены по соображениям надежности (не более 0,08 м/с2), а также для обеспечения психологического комфорта. Определить баланс между показателями гибкости и жесткости – еще одна сложность в разработке конструкций высоток. Особые требования к конструктивному решению предъявляют также проблемы безопасности, в частности защиты от прогрессирующего обрушения. Теперь в методиках расчета предусматривается моделирование поведения системы в случае выхода из работы части несущих конструкций, способных повлечь за собой падение всего здания.

МАТЕРИАЛЫ

В строительстве высоток применяют преимущественно сталь и бетон. В начале «эры небоскребов» для каркасных систем использовали металлические колонны и балки. Профильные элементы соединялись при помощи заклепок или болтов в пространственные структуры. Изобретение железобетона в конце XIX века потеснило сталь, но до середины ХХ века нельзя было утверждать, что один материал полностью вытеснил другой. И тот, и другой применялись в строительстве одновременно.

После второй мировой войны все чаще высотные здания стали строить из железобетонных конструкций, которые позволяют механизировать монтажно-строительные процессы, а также разнообразить архитектурный облик сооружений. Они обладают большей огнестойкостью, устойчивостью, обусловленной большим весом, быстрым затуханием колебаний.

Стальные конструкции необходимо защищать от воздействия огня при помощи специальных покрытий или бетона. Благодаря своим характеристикам сталь и бетон могут комбинироваться при учете разницы их свойств. Для высоконагруженных несущих конструкций (колонн, стоек, ригелей) применяют железобетон с жесткой арматурой в виде прокатных профилей, а также комбинированные сталебетонные конструкции.

Использование бетона для подобных целей стимулирует совершенствование этого материала. Разрабатываются новые смеси, обладающие специальными качествами. Созданы бетоны классов В80 и В100, по прочности приближающиеся к стали. Широко применяются более низкие классы высокопрочных бетонов В60 и В70, так как с ростом прочности бетона возрастает его стоимость, повышается хрупкость и снижается огнестойкость. Тем не менее применение высокопрочного бетона и его модификаций позволяет сократить расход арматуры до 35% и обеспечивает набор прочности за двое-трое суток не только в нормальных, но и в зимних условиях без применения электропрогрева. Бетоны высокой консистенции и самоуплотняющиеся бетоны позволяют возводить густоармированные конструкции совершенно без вибрации либо с очень небольшим виброуплотнением.

ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ

Каркасная система, ставшая базовой при строительстве высоток, изменила и принципиальное решение наружных ограждающих конструкций. Толстые массивные стены уступили место легким конструкциям, либо опирающимся на межэтажные перекрытия, либо подвешивающимся к ним и выполняющим только функцию защиты от климатических, атмосферных факторов и обеспечивающим тепловую изоляцию. С развитием фасадных технологий со второй половины ХХ века появилась возможность использовать легкие профильные системы с заполнением панелями из алюминия, специального стекла, полимерных материалов. В современных высотках широко применяют вентилируемые системы, отделанные натуральным или искусственным камнем, декоративными металлическими листами, фибробетонными экранами и другими материалами.

Требования к фасадным системам, предназначенным для высотного домостроения, значительно превосходят требования к ограждающим конструкциям обычных домов, благодаря многократному возрастанию всех видов нагрузок – как динамических, так и климатических. Фасады высоток должны быть воздухо- и паронепроницаемыми, погодостойкими, огнестойкими, технологичными, шумоизоляционными, долговечными и надежными в эксплуатации, ремонтопригодными, а также обладать хорошими теплоизоляционными свойствами, низким коэффициентом температурного расширения и небольшой массой.

Фасадные конструкции должны не только выдерживать прямое давление ветра (до 20–25 м/с), но и сопротивляться усилиям на отрыв, возникающим при движении воздуха вдоль стены и появлении зон отрицательного давления из-за турбулентности. Климатическое воздействие на фасадные системы не ограничивается ветром. В зависимости от климатических условий на конструкции могут оказывать воздействие солнечная радиация, ливневые дожди, грозы и смог.
Фасадные системы постоянно совершенствуются, разрабатываются новые технологии изготовления и монтажа конструкций, материалы (керамика в комбинации с боросиликатным стеклом, панели из металлической пены, нанокомпозиты, стеклянные панели с супергидрофобным самоочищающимся слоем и т.д.).

Совершенствуются и стыковые соединения, узлы крепления и внешний дизайн. Особую роль в истории высотного строительства сыграли светопрозрачные ограждающие конструкции. Возможность сделать максимально прозрачными наружные стены придавала идее сверхвысоких зданий особое значение. Вид с высоты птичьего полета можно было получить, просто сидя в кресле за рабочим столом на 40-м этаже небоскреба.

С развитием конструктивных систем, позволяющих строить все более высокие и сложные структуры с наружными раскосными решетками, ограждающие конструкции вновь стали выполнять несущую функцию. Пространственные стальные и бетонные скелеты с диагональными распорками взяли на себя часть веса здания. При этом стеклянные фасады сохранили за собой главную роль – ограждающей и защищающей сооружение оболочки.

Светопрозрачные системы для высотных зданий проектируются с соблюдением нескольких условий. Профильные несущие элементы для увеличения прочностных качеств и долговечности, как правило, изготавливаются из стали. В светопрозрачном заполнении используются особо прочные, пожаростойкие, низкоэмиссионые и солнцезащитные стекла. Окна традиционной конструкции при использовании в высотных зданиях не обеспечивают требуемого сопротивления воздухопроницанию, поэтому разрабатываются специальные конструкции заполнения световых проемов. Во всем мире широко применяются системы double skin с внешними защитными экранами из особо прочного стекла. Они позволяют делать внутреннее остекление частично или полностью открывающимся. В обычных одинарных фасадах стеклянные конструкции делаются неоткрывающимися из соображений безопасности и из-за сильных воздушных потоков вокруг здания. В них применяют окна с воздухозаборными клапанами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *