Корреляция что это в психологии

Корреляции в психологии

Корреляционный анализ активно используется в психологических исследованиях для выявления взаимосвязи между психологическими параметрами. Практическая глава курсовых, дипломных и магистерских работ психологии чаще всего содержит корреляционный анализ.

Для того, чтобы написать диплом по психологии и успешно его защитить, необходимо не только знать, что такое корреляция, но и понимать специфику использования этого статистического метода в психологических исследования.

В курсовых и дипломных по психологии чаще всего используются два корреляционных метода: коэффициенты ранговой корреляции Спирмена и корреляции Пирсона. Второй из них более строгий, то есть для его использования необходимо выполнения некоторых условий к данным. Чаще используется менее строгий коэффициент корреляции Спирмена. Но суть обоих коэффициентов корреляции применительно к психологическому исследованию одинакова.

Корреляции в психологическом исследовании

Корреляция – это степень взаимосвязи между какими-то показателями. В психологическом исследовании психологические показатели коррелируют, если в некоторой группе они изменяются согласованно. Например, от испытуемого к испытуемому с ростом одного показателя растет и другой – корреляция положительная или прямая. Или от испытуемого к испытуемому с ростом одного показателя второй снижается – корреляция отрицательная или обратная.

Например, мы измерили у 10 российских мужей два психологических показателя: 1) уровень удовлетворенности браком и 2) уровень интеллекта. Для простоты не будем привязываться к конкретным методикам, и показатели возьмем условные. В таблице приведены эти данные.

Уровень удовлетворённости браком

Посмотрим внимательно, как меняются показатели УБ и интеллекта от испытуемого к испытуемому. Видно, что УБ растет и уровень интеллекта тоже растет. Причем нет ни одного исключения в этой закономерности. Это пример положительной корреляции, причем это максимально возможная положительная (прямая) корреляция, равная 1.

Содержательно полученная корреляция означает, что чем выше уровень интеллекта у российских мужей, тем выше их удовлетворенность браком.

В следующей таблице данные, полученные на мужьях другой страны, например, Монголии.

Уровень удовлетворённости браком

Посмотрим внимательно, как меняются показатели УБ и интеллекта от испытуемого к испытуемому. Видно, что УБ растет, а уровень интеллекта строго снижается. Причем нет ни одного исключения в этой закономерности.

Содержательно полученная корреляция означает, что чем выше уровень интеллекта у монгольских мужей, тем ниже их удовлетворенность браком. Или, по-другому, чем ниже уровень интеллекта монгольских мужей, тем выше их удовлетворенность браком. Описание полученного результата может звучать примерно так.

«Как видим, мы получили совершенно различные результаты на выборках российских и монгольских мужей. Корреляционный анализ показал, что чем умнее российские мужчины, тем они более счастливы в браке.

Таким образом, у монгольских мужчин низкий интеллект выступает фактором роста удовлетворенности браком, а у российских – фактором снижения удовлетворенности браком.»

В следующей таблице мы немного изменили показатели во втором столбце.

Уровень удовлетворённости браком

Расчет показал, что теперь коэффициент корреляции равен 0,976.

Теперь еще больше перепутаем показатели во втором столбце.

Уровень удовлетворённости браком

Корреляция в дипломной (курсовой) работе по психологии

Положительный коэффициент корреляции означает положительную (прямую) зависимость между двумя психологическими показателями в группе.

Отрицательный коэффициент корреляции означает отрицательную (обратную) зависимость между двумя психологическими показателями в группе.

Статистически значимые коэффициенты корреляции выявляются путем сравнения полученного нами эмпирического коэффициента корреляции с критическим значением.

Критическое значение коэффициента корреляции берется из специальных статистических таблиц, и его значение определяется объемом выборки. Чем больше человек в выборке, тем ниже критическое значение.

Если расчет коэффициента корреляции проводится с помощью статистических программ, то она сама помечает значимые корреляции, и необходимость искать критические значения и сравнивать исчезает.

В группе подростков из 30 человек с помощью тестов были измерены два показателя: уровень агрессивности и уровень тревожности.

С помощью статистической программы рассчитали коэффициент корреляции агрессивности и тревожности.

Коэффициент корреляции агрессивности и тревожности в группе подростков

Критическое значение коэффициента корреляции Спирмена для выборки из 30 человек при уровне значимости р=0,05 (см. ниже) равен 0,36.

Сравниваем и получаем, что наш эмпирический коэффициент корреляции больше по модулю, чем критический. Следовательно, корреляция статистически значима.

Вот как правильно должно выглядеть описание полученной корреляции:

«Анализ данных, приведенных в таблице, показывает, что выявлена статистически значимая положительная корреляция между уровнем агрессивности и уровнем тревожности в группе подростков. Это означает, что чем выше проявления агрессивности у подростков, тем выше их склонность проявлять тревожные реакции в ситуациях, угрожающих безопасности или самооценке».

Обычно описания корреляции достаточно. Однако лучше дополнительно привести интерпретацию полученного результата. Примерно вот так:

«С нашей точки зрения, полученный результат показывает, что рост тревоги подростка в связи с его физической безопасностью, а также в связи с угрозой самооценке может реализоваться в форме агрессивных реакций. Такой результат еще раз подтверждает мнение многих авторов о том, что подростковая агрессия выступает непродуктивным и архаичным способом адаптации. В этой связи развитие у подростков конструктивных способов преодоления негативных эмоциональных состояний, в том числе и тревожности, будет способствовать снижению их агрессивности».

Все статистические расчеты носят приблизительный характер. Уровень этой приблизительности и определяет «р». Уровень значимости записывается в виде десятичных дробей, например, 0,023 или 0,965. Если умножить такое число на 100, то получим показатель р в процентах: 2,3% и 96,5%. Эти проценты отражают вероятность ошибочности нашего предположения о взаимосвязи между агрессивностью и тревожностью.

То есть, выше приведенный коэффициент корреляции 0,58 между агрессивностью и тревожностью получен при уровне статистической значимости 0,05 или вероятности ошибки 5%. Что это конкретно означает?

Выявленная нами корреляция означает, что в нашей выборке наблюдается такая закономерность: чем выше агрессивность, тем выше тревожность. То есть, если мы возьмем двух подростков, и у одного тревожность будет выше, чем у другого, то, зная о положительной корреляции, мы можем утверждать, что у этого подростка и агрессивность будет выше. Но так как в статистике все приблизительно, то, утверждая это, мы допускаем, что можем ошибиться, причем вероятность ошибки 5%. То есть, сделав 20 таких сравнений в этой группе подростков, мы можем 1 раз ошибиться с прогнозом об уровне агрессивности, зная тревожность.

Корреляционный анализ выявляет взаимосвязь между психологическими показателями. При этом наличие корреляции, строго говоря, не дает нам оснований говорить о причинно-следственных связях между показателями.

В то же время в реальных исследованиях на основании корреляций часто делаются выводы о причинно-следственных связях. В нашем случае можно было бы сказать, что наличие положительной статистически значимой корреляционной связи между агрессивностью и тревожностью позволяет говорить о том, что тревожность выступает одним из факторов (причин) роста агрессивности у подростков. В этом случае также можно сказать, что тревожность влияет на агрессивность.

Термин «влияние» как раз и предполагает наличие между показателями причинно-следственной связи. А термин «взаимосвязь» не предполагает.

В некоторых вузах требуют использовать только термин взаимосвязь, и это более правильно и строго. В других спокойно воспринимают термин «влияние», который ближе к жизни.

Надеюсь, эта статья поможет вам написать работу по психологии самостоятельно. Если понадобится помощь, обращайтесь (все виды работ по психологии; статистические расчеты). Заказать

Источник

Корреляции в дипломных работах по психологии

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Что такое корреляция

Корреляция – это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа – машина едет быстрее. Вы сбавляете газ – авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная – скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод – между продажами фирмы и окладом сотрудников есть прямая зависимость – чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа – скорость) лежит физический закон. В основе корреляционной связи (продажи – оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

Прямая и обратная

Сильная и слабая

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

Успеваемость (баллы)

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель – длину прыжка с места.

Испытуемый

Длина прыжка с места (м)

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона – это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

Корреляция что это в психологии. Смотреть фото Корреляция что это в психологии. Смотреть картинку Корреляция что это в психологии. Картинка про Корреляция что это в психологии. Фото Корреляция что это в психологии

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.

Корреляция что это в психологии. Смотреть фото Корреляция что это в психологии. Смотреть картинку Корреляция что это в психологии. Картинка про Корреляция что это в психологии. Фото Корреляция что это в психологии

Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко – он скрывается за следующими формулировками:

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

Источник

Применение корреляционного анализа в психологии 3989

Шишлянникова Л.М.
заведующая учебно-производственной лабораторией математических моделей в психологии и педагогике, ФГБОУ ВО МГППУ, Москва, Россия
e-mail: Sh-lyubov@yandex.ru

Применение статистических методов при обработке материалов психологических исследований дает большую возможность извлечь из экспериментальных данных полезную информацию. Одним из самых распространенных методов статистики является корреляционный анализ.

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции, двумерной описательной статистики, количественной меры взаимосвязи (совместной изменчивости) двух переменных. Таким образом, это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками.

Корреляционный анализ для двух случайных величин заключает в себе:

Основное назначение корреляционного анализа – выявление связи между двумя или более изучаемыми переменными, которая рассматривается как совместное согласованное изменение двух исследуемых характеристик. Данная изменчивость обладает тремя основными характериcтиками: формой, направлением и силой.

По форме корреляционная связь может быть линейной или нелинейной. Более удобной для выявления и интерпретации корреляционной связи является линейная форма. Для линейной корреляционной связи можно выделить два основных направления: положительное («прямая связь») и отрицательное («обратная связь»).

Сила связи напрямую указывает, насколько ярко проявляется совместная изменчивость изучаемых переменных. В психологии функциональная взаимосвязь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков. Наглядное представление о характере вероятностной связи дает диаграмма рассеивания – график, оси которого соответствуют значениям двух переменных, а каждый испытуемый представляет собой точку.

Корреляция что это в психологии. Смотреть фото Корреляция что это в психологии. Смотреть картинку Корреляция что это в психологии. Картинка про Корреляция что это в психологии. Фото Корреляция что это в психологии

В качестве числовой характеристики вероятностной связи используют коэффициенты корреляции, значения которых изменяются в диапазоне от –1 до +1. После проведения расчетов исследователь, как правило, отбирает только наиболее сильные корреляции, которые в дальнейшем интерпретируются (табл. 1).

Корреляция что это в психологии. Смотреть фото Корреляция что это в психологии. Смотреть картинку Корреляция что это в психологии. Картинка про Корреляция что это в психологии. Фото Корреляция что это в психологии

Критерием для отбора «достаточно сильных» корреляций может быть как абсолютное значение самого коэффициента корреляции (от 0,7 до 1), так и относительная величина этого коэффициента, определяемая по уровню статистической значимости (от 0,01 до 0,1), зависящему от размера выборки. В малых выборках для дальнейшей интерпретации корректнее отбирать сильные корреляции на основании уровня статистической значимости. Для исследований, которые проведены на больших выборках, лучше использовать абсолютные значения коэффициентов корреляции.

Таким образом, задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Выбор метода вычисления коэффициента корреляции зависит от типа шкалы, к которой относятся переменные (табл. 2).

Корреляция что это в психологии. Смотреть фото Корреляция что это в психологии. Смотреть картинку Корреляция что это в психологии. Картинка про Корреляция что это в психологии. Фото Корреляция что это в психологии

Для переменных с интервальной и с номинальной шкалой используется коэффициент корреляции Пирсона (корреляция моментов произведений). Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу или не является нормально распределенной, используется ранговая корреляция по Спирмену или

Таким образом, условия применения коэффициентов корреляции будут следующими:

Основная статистическая гипотеза, которая проверяется корреляционным анализом, является ненаправленной и содержит утверждение о равенстве корреляции нулю в генеральной совокупности H 0 : r xy = 0. При ее отклонении принимается альтернативная гипотеза H 1 : r xy ≠ 0 о наличии положительной или отрицательной корреляции – в зависимости от знака вычисленного коэффициента корреляции.

Подробное описание математической процедуры для каждого коэффициента корреляции дано в учебниках по математической статистике [3]; [4]; [8]; [11] и др. Мы же ограничимся описанием возможности применения этих коэффициентов в зависимости от типа шкалы измерения.

Корреляция метрических переменных

Коэффициент Пирсона находит широкое применение в психологии и педагогике. Например, в работах И. Я. Каплуновича [6, с. 115] и П. Д. Рабиновича, М. П. Нуждиной [9, с. 112] для подтверждения выдвинутых гипотез был использован расчет коэффициента линейной корреляции Пирсона.

Для статистического решения о принятии или отклонении H 0 обычно устанавливают α = 0,05, а для большого объема наблюдений (100 и более) α = 0,01. Если p ≤ α, H 0 отклоняется и делается содержательный вывод, что обнаружена статистически достоверная (значимая) связь между изучаемыми переменными (положительная или отрицательная – в зависимости от знака корреляции). Когда p > α, H 0 не отклоняется, содержательный вывод ограничен констатацией, что связь (статистически достоверная) не обнаружена.

Если связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует проверить возможные причины недостоверности связи.

Нелинейность связи – для этого проанализировать график двумерного рассеивания. Если связь нелинейная, но монотонная, перейти к ранговым корреляциям. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, и вычислить корреляции отдельно для каждой части выборки, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака.

Наличие выбросов и выраженная асимметрия распределения одного или обоих признаков. Для этого необходимо посмотреть гистограммы распределения частот обоих признаков. При наличии выбросов или асимметрии исключить выбросы или перейти к ранговым корреляциям.

Неоднородность выборки (проанализировать график двумерного рассеивания). Попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции:

Корреляция ранговых переменных

Для корректного вычисления обоих коэффициентов (Спирмена и Кендалла) результаты измерений должны быть представлены в шкале рангов или интервалов. Принципиальных отличий между этими критериями не существует, но принято считать, что коэффициент Кендалла является более «содержательным», так как он более полно и детально анализирует связи между переменными, перебирая все возможные соответствия между парами значений. Коэффициент Спирмена более точно учитывает именно количественную степень связи между переменными.

Коэффициент ранговой корреляции Спирмена является непараметрическим аналогом классического коэффициента корреляции Пирсона, но при его расчете учитываются не связанные с распределением показатели сравниваемых переменных (среднее арифметическое и дисперсия), а ранги. Например, необходимо определить связь между ранговыми оценками качеств личности, входящими в представление человека о своем «Я реальном» и «Я идеальном».

Коэффициент Спирмена широко используется в психологических исследованиях. Например, в работе Ю. В. Бушова и Н. Н. Несмеловой [1]: для изучения зависимости точности оценки и воспроизведения длительности звуковых сигналов от индивидуальных особенностей человека был использован именно он.

Применение коэффициента Кендалла является предпочтительным, если в исходных данных имеются выбросы.

Особенностью ранговых коэффициентов корреляции является то, что максимальным по модулю ранговым корреляциям (+1, –1) не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными X и Y : достаточна лишь монотонная функциональная связь между ними. Ранговые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значение другой переменной (+1), или большему значению одной переменной всегда соответствует меньшее значение другой переменной и наоборот (–1).

Если статистически достоверная связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует сначала перейти от коэффициента

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции (по аналогии с метрическими коэффициентами корреляции).

Корреляция дихотомических переменных

При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент j, который представляет собой коэффициент корреляции для дихотомических данных.

Величина коэффициента φ лежит в интервале между +1 и –1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков. Однако интерпретация φ может выдвигать специфические проблемы. Дихотомические данные, входящие в схему вычисления коэффициента φ, не похожи на двумерную нормальную поверхность, следовательно, неправильно считать, что интерпретируемые значения r xy =0,60 и φ = 0,60 одинаковы. Коэффициент φ можно вычислить методом кодирования, а также используя так называемую четырехпольную таблицу или таблицу сопряженности.

Для применения коэффициента корреляции φ необходимо соблюдать следующие условия:

Данный вид корреляции рассчитывают в компьютерной программе SPSS на основании определения мер расстояния и мер сходства. Некоторые статистические процедуры, такие как факторный анализ, кластерный анализ, многомерное масштабирование, построены на применении этих мер, а иногда сами представляют добавочные возможности для вычисления мер подобия.

Проведение корреляционного анализа с помощью компьютерных программ SPSS и Statistica – простая и удобная операция. Для этого после вызова диалогового окна Bivariate Correlations (Analyze>Correlate> Bivariate…) необходимо переместить исследуемые переменные в поле Variables и выбрать метод, с помощью которого будет выявляться корреляционная связь между переменными. В файле вывода результатов для каждого рассчитываемого критерия содержится квадратная таблица (Correlations). В каждой ячейке таблицы приведены: само значение коэффициента корреляции (Correlation Coefficient), статистическая значимость рассчитанного коэффициента Sig, количество испытуемых.

В шапке и боковой графе полученной корреляционной таблицы содержатся названия переменных. Диагональ (левый верхний – правый нижний угол) таблицы состоит из единиц, так как корреляция любой переменной с самой собой является максимальной. Таблица симметрична относительно этой диагонали. Если в программе установлен флажок «Отмечать значимые корреляции», то в итоговой корреляционной таблице будут отмечены статистически значимые коэффициенты: на уровне 0,05 и меньше – одной звездочкой (*), а на уровне 0,01 – двумя звездочками (**).

Итак, подведем итоги: основное назначение корреляционного анализа – это выявление связи между переменными. Мерой связи являются коэффициенты корреляции, выбор которых напрямую зависит от типа шкалы, в которой измерены переменные, числа варьирующих признаков в сравниваемых переменных и распределения переменных. Наличие корреляции двух переменных еще не означает, что между ними существует причинная связь. Хотя корреляция прямо не указывает на причинную связь, она может быть ключом к разгадке причин. На ее основе можно сформировать гипотезы. В некоторых случаях отсутствие корреляции имеет более глубокое воздействие на гипотезу о причинной связи. Нулевая корреляция двух переменных может свидетельствовать, что никакого влияния одной переменной на другую не существует.

Ссылка для цитирования

В помощь психологу | Дмитриева Н.В., Рядинская Н.Ю., Хохлева Е.В.

В помощь психологу | Шишкова А.М., Бочаров В.В., Стрижицкая О.Ю., Вукс А.Я.

Экспериментальная психология | Миргородский В.И., Дементиенко В.В., Дорохов В.Б., Герасимов В.В., Пешин С.В., Шахнарович В.М.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *