Что такое крест-фактор (пик-коэффициент, коэффициент амплитуды, пик-фактор, Crest factor, Cross Ratio, Peak-to-average ratio (PAR), CF, C.F.)
Что такое крест-фактор (пик-коэффициент, коэффициент амплитуды, пик-фактор, Crest factor, Cross Ratio, Peak-to-average ratio (PAR), CF, C.F.)
Крест-фактор, указываемый как выходной параметр ИБП, характеризует его способность питать нелинейную нагрузку, потребляющую ток импульсами. Крест-фактор большинства ИБП равен 3:1
Крест-фактор это характеристика взаимодействия нагрузки и источника, желательно рассматривать конкретный случай взаимодействия нагрузки или источника (выходное напряжение ИБП может сильно отличаться от синусоиды). Например, в случае синусоидального питающего напряжения и компьютерного блока питания крест-фактор равен 2—3. Использование напряжения, полученного в результате ступенчатой аппроксимации на той же нагрузке, обычно дает крест-фактор от 1,4 до 1,9. Если компьютер питается от ИБП, имеющего выходное напряжение в виде меандра с паузой, то пик-фактор уменьшается до 1.8-2.
Описанные значения CF относятся к установившимуся режиму работы нагрузки. Следует учитывать переходные процессы, происходящие при изменении режимов работы нагрузки (запуск, сброс, наброс нагрузки).
При сравнении устройств нужно учитывать вероятные различия в методиках измерений CF.
Коэффициент амплитуды сигнала (крест-фактор) – Crest Factor, Cross Ratio
Коэффициент амплитуды сигнала (крест-фактор)
Crest Factor*, Crest-factor* – англ. Cross Ratio – англ. Peak-to-average ratio (PAR) – англ. Peak-to-average Power Ratio (PAPR) – англ.
*Crest – вершина, гребень, пик – англ.
Коэффициент амплитуды (крест-фактор) – это показатель, характеризующий способность ИБП питать нелинейную нагрузку, потребляющую импульсный (нелинейный) ток.
Определяется как отношению амплитуды (мгновенного максимального/пикового значения) сигнала к действующему (эффективному, среднекв.,скз/rms) значению сигнала. В электротехнике обычно применяется для характеристики формы тока в сети. Определение для коэффициента амплитуды для этого случая приведено ниже.
ИБП компании N-Power способны питать нелинейную нагрузку с крест-фактором до 3.5:1.
Крест-фактор нагрузки. Форма напряжения и тока на линейной нагрузке
Крест-фактор нагрузки. Форма напряжения и тока на нелинейной нагрузке
Определение коэффициента амплитуды
Коэффициент амплитуды сигнала равен отношению амплитуды (максимального значения) сигнала к действующему (эффективному, среднекв.,скз/rms) значению сигнала.
Ка = Amax / Arms= Aмакс. / Aэфф.
В электротехнике наиболее часто термин применяется для характеристики сигнала тока нагрузки или характеристики сигнала нагрузочного тока ИБП допустимого для данного типа ИБП. Таким образом коэффициент амплитуды характеризует способность ИБП питать нелинейную нагрузку, потребляющую импульсный (нелинейный) ток.
Ниже представлены различные примеры форм сигнала и их коэффициенты амплитуды:
Прямоугольный сигнал (Ка=1)
Синусоидальный сигнал (Ка=√2
=1.41)
Реальная форма тока (Ка=
С достаточной точностью коэффициент амплитуды (Crest-factor) также может быть определён как корень из двух умножить на отношение амплитуды импульсного тока в реальной нелинейной нагрузке Iмакс (нелин.) к амплитуде тока гармонической формы Iмакс (лин.) при эквивалентной потребляемой мощности.
В случае синусоидальных сигналов:
Однако, в силовой электротехнике этот термин коэффициент формы кривой используется редко.
Дополнительная информация для технических специалистов из учебника Г.И. Атабекова «Основы теории цепей»
В радиотехнике и электротехнике пользуются также коэффициентами формы кривой (Kф) и амплитуды (Kа).
Коэффициент амплитуды определяется как отношение максимального значения функции к действующему значению:
Для гармонической функции:
Коэффициент формы кривой определяется как отношение действующего значения функции к среднему значению функции, взятой по абсолютной величине:
Что такое источник бесперебойного питания (ИБП). Термины и определения
СПИСОК ТЕРМИНОВ:
ТЕРМИНЫ С ОБЪЯСНЕНИЯМИ:
Качество сетевого электропитания и его неполадки
Критичная нагрузка (Critical Load)
Нагрузка, чувствительная к неполадкам в электросети, грозящим выходом оборудования из строя, нарушением технологического процесса или утратой важной информации. Чтобы предотвратить подобные случаи, для питания такой нагрузки (файловых серверов, рабочих станций, персональных компьютеров, телекоммуникационного и офисного оборудования и др.) следует применять ИБП.
Источник бесперебойного питания (ИБП) UPS
Устройство, применяемое для защиты оборудования от проблем с питающим напряжением (пропаданием, отклонения от номинала, импульсных помех и др.), использующее для аварийного питания нагрузки энергию аккумуляторных батарей. Основной задачей является поддержание работоспособности критичного оборудования при авариях сетевого напряжения, продолжающихся от нескольких минут до нескольких суток в зависимости от мощности нагрузки и емкости батарейного комплекта. Этого времени достаточно либо для устранения неполадок в линии электропередачи, либо для штатного отключения критичной нагрузки.
Активная мощность
Полезная мощность, отбираемая нагрузкой, в том числе и ИБП, из электросети и преобразуемая в энергию любого иного вида (механическую, тепловую, электрическую, электромагнитную и др.). Вычисляется как усредненный по периоду сигнала определенный интеграл произведения мгновенных значений входного тока и напряжения. Единица измерения: Вт (Ватт).
Полная мощность
Кажущаяся потребляемая нагрузкой (например, ИБП) суммарная мощность с учетом активной и реактивной ее составляющих, а также отклонения формы тока и напряжения от гармонической.
Вычисляется как произведение среднеквадратичных значений входного тока и напряжения. Единица измерения: ВА (Вольт х Ампер).
ИБП резервного типа (Off-line или Standby)
4 мс) на батареи и более интенсивная эксплуатация аккумуляторов, так как устройство переходит в автономный режим при любых неполадках в электросети. ИБП резервного типа, как правило, имеют небольшую мощность и применяются для обеспечения бесперебойного электропитания отдельных устройств (персональных компьютеров, рабочих станций, офисного оборудования) в районах с хорошим качеством электрической сети.
Off-Line (Standby) Нормальный режим работы
Off-Line (Standby) Автономный режим работы
Линейно-интерактивный ИБП (Line-Interactive)
Источник бесперебойного питания, выполненный по схеме с коммутирующим устройством (Off-line) и дополненной автоматическим регулятором напряжения (AVR) на основе автотрансформатора с переключаемыми обмотками (ступенчатым стабилизатором).
Основное преимущество линейно-интерактивного ИБП по сравнению с источником резервного типа заключается в том, что он способен обеспечить нормальное функционирование нагрузки при повышенном или пониженном напряжении электросети (наиболее распространенный вид неполадок в отечественных электросетях) без перехода в автономный режим, что позволяет продолжать работу от сети, экономя энергию батарей и избегая простоев оборудования. Недостатком линейно-интерактивной схемы является не нулевое время переключения (
Line-Interactive (нормальный режим работы)
Line-Interactive (автономный режим работы)
Автоматический регулятор напряжения Automic Voltage Regulator (AVR)
Автоматический регулятор напряжения, построенный на основе автотрансформатора с переключаемыми обмотками (см.рисунки). Применяется в ИБП, собранных по линейно-интерактивной схеме, для ступенчатой корректировки входного напряжения в сторону его повышения (пониженное входное напряжение) или понижения (повышенное входное напряжение). AVR расширяет диапазон входных напряжений, при которых ИБП обеспечивает нормальное питание нагрузки без перехода в автономный режим работы.
У ИБП ELTENA (INELT) Smart Station DOUBLE диапазон изменения входного напряжения, при котором ИБП не переходит на батареи, продолжая питать нагрузку от сети, составляет 140-280В, что позволяет избегать простоев в условиях длительных просадок напряжения.
Нормальный режим
Режим повышения (boost)
Режим понижения (buck)
ИБП с двойным преобразованием напряжения (On-line)
Схема On-Line подразумевает, что поступающее на вход ИБП переменное сетевое напряжение преобразуется выпрямителем в постоянное, а затем с помощью инвертора снова в переменное. Аккумуляторная батарея, постоянно включенная между выпрямителем и инвертором, питает последний при отсутствии входного напряжения. Схема On-Line обеспечивает идеальное выходное напряжение при любых неполадках в электросети. Она характеризуется нулевым временем переключения из нормального режима в автономный и обратно без переходных процессов в выходном напряжении.
Другим существенным преимуществом ИБП с двойным преобразованием напряжения является наличие обходной цепи (Байпаса), что позволяет при перегрузке по выходу ИБП, перегреве или выходе инвертора ИБП из строя переводить нагрузку на питание от входной сети, избегая ее отключения. Кроме того, многие ИБП с двойным преобразованием (в том числе, все выпускаемые в настоящее время ИБП ELTENA (INELT) Monolith мощностью 6 кВА и выше) допускают объединение в параллельные системы с резервированием и/или наращиванием мощности, что дает возможность строить системы бесперебойного питания высочайшей надежности. К недостаткам схемы On-Line относятся ее сравнительная сложность, более высокая стоимость, а также энергетические потери на двойном преобразовании напряжения. Необходимо заметить, что защита наиболее критичных устройств, таких, как серверы, телекоммуникационное оборудование, АСУ ТП, рекомендуется осуществлять только с использованием ИБП со схемой On-Line. В модельном ряду ELTENA (INELT) по схеме On-Line с двойным преобразованием напряжения построены все ИБП Monolith.
On-Line (нормальный режим работы)
On-Line (автономный режим работы)
ИБП с выходным изолирующим трансформатором
Инверторы с выходным изолирующим трансформатором применяются в ИБП средней и большой мощности с двойным преобразованием напряжения (On-Line) и предназначенных для работы с широким перечнем нагрузок.
Основные преимущества ИБП с выходным изолирующим трансформатором: — Возможность работы с нагрузками любых типов, имеющих различные коэффициенты мощности, пусковые токи и т.п. — Стабильность выходных параметров, как при статической, так и динамической нагрузке. — Гальваническая изоляция увеличивает помехозащищенность нагрузки. — Более высокая надежность. Основные недостатки ИБП с выходным изолирующим трансформатором является следствием его достоинств: — Большие габариты и вес по сравнению с бестрансформаторными ИБП. — Более высокая стоимость. ИБП с выходным изолирующим трансформатором (преимущественно трехфазные, мощностью 20 кВА и выше) большой мощности применяются для защиты наиболее ответственного оборудования, требующего надежной защиты. В модельном ряду ELTENA (INELT) по схеме с выходным изолирующим трансформатором построены ИБП серии Monolith XL.
Бестрансформаторные ИБП On-Line с высокочастотным инвертором.
Основные преимущества бестрансформаторных схем: 1. Малые габариты и вес. 2. Обычно более низкая цена. 3. Относительно высокий КПД. Основные недостатки бестрансформаторных схем: 1. Ниже перегрузочная способность и общая надежность ИБП. Благодаря высоким потребительским свойствам и сравнительно доступным ценам бестрансформаторные ИБП практически полностью вытеснили ИБП с выходным трансформатором с рынка однофазных ИБП мощностью до 20 кВА.
Выпрямитель (Rectifier)
Инвертор (Inverter)
Форма напряжения на выходе инвертора, генерирующего прямоугольные импульсы.
Форма напряжения на выходе инвертора с пошаговой аппроксимацией.
Коэффициент полезного действия (КПД)
Коэффициент полезного действия, определяемый как отношение выходной мощности устройства к потребляемой им от сети (при полностью заряженных батареях).
THD-фильтр
Устройство, устанавливаемое во входной цепи ИБП для уменьшения его влияния на форму тока и напряжения в питающей электросети. Поскольку входным узлом любого мощного ИБП, построенных по схеме с двойным преобразованием (On-Line), является большинство выпрямитель нелинейный и потребляющий большой импульсный ток элемент), такие ИБП становятся причиной «загрязнения» электросети.
Коэффициент нелинейных искажений, Total Harmonic Distorsion (THD)
Показатель, характеризующий степень отличия формы сигнала от синусоидальной. В основном используется для измерения искажений формы входного тока или выходного напряжения ИБП. КНИ равен отношению суммы мощностей высших гармоник сигнала к мощности его первой гармоники.
Примеры осциллограмм входного тока для некоторых других видов нагрузок:
6-п.п.выпрямитель без фильтра
6.п.п.выпрямитель с фильтром
6-п.п.выпрямитель с улучшенным фильтром фильтром
12-п.п.выпрямитель с улучшенным
Индуктивная нагрузка (электродвигатель)
Последовательное резервирование
Данная схема в настоящее время применяется крайне редко, только для ИБП, не имеющих функции параллельной работы.
Параллельное резервирование (система 1+1)
Последовательное резервирование
Параллельное резервирование
Техническое решение для повышения надежности и/или для увеличения суммарной выходной мощности системы. Оно предусматривает параллельное соединение двух или нескольких одноранговых (одинаковых по мощности) ИБП по входу и выходу. Работоспособность такой системы обеспечивается специальной схемой фазовой синхронизации выходных напряжений.
Обходная цепь байпас (Bypass)
(режим работы байпас)
Коэффициент мощности, Power factor (PF)
Комплексный показатель, характеризующий линейные и нелинейные искажения формы тока и напряжения в электросети, обусловленные влияния нагрузки (например, ИБП), вычисляется как отношение поглощаемой нагрузкой активной мощности к полной.
В случае линейной нагрузки коэффициент мощности равен косинусу угла сдвига между током и напряжением и в зависимости от характера нагрузки может носить емкостной или индуктивный характер. В случае активной нелинейной нагрузки коэффициент мощности определяется отношением мощности первой гармоники тока к общей активности мощности, потребляемой нагрузкой. Необходимо заметить, что реальная промышленная нагрузка является нелинейной и носит преимущественно емкостной характер (PF=0,8).
Показатель, характеризующий способность ИБП питать нелинейную нагрузку, потребляющую импульсный (нелинейный) ток. Определяется как отношение амплитуды импульсного тока в нелинейной нагрузке Im (нелин.) к амплитуде тока гармонической формы Im (лин.) при эквивалентной потребляемой мощности (см. рисунки).
термины имеющие отношение к системам бесперебойного питания
FREQUENCY VARIATION (изменение частоты) Колебания частоты входного напряжения. Согласно ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» нормально допустимым отклонением частоты в сетях РФ является значение +/-0,2 Гц.
FLOAT CHARGING (плавающая зарядка, зарядка на холостом ходу) Метод зарядки аккумуляторов, для которого были сконструированы герметичные свинцово-кислотные аккумуляторы (sealed lead acid batteries). Зарядное устройство Float charging поддерживает на аккумуляторах некоторое напряжение, называемое «напряжением холостого хода» («float voltage»). Такое подзаряжающее напряжение идеально для продления срока службы аккумулятора. Когда «холостое напряжение» («float voltage») приложено к аккумулятору, в нем возникает «холостой ток» («float current»), точно компенсирующий собственный ток саморазрядки аккумулятора. Герметичные свинцовокислотные аккумуляторы должны хотя бы иногда подзаряжаться на холостом ходу, иначе со временем они теряют полезные свойства из-за процесса так называемой сульфатации. Максимальный срок службы этих аккумуляторов достигается при постоянном применении «плавающей» подзарядки.
CREST FACTOR (пик-коэффициент, пик-фактор) Отношение максимального (пикового) значения тока к его среднеквадратичному (RMS) значению. Для волн прямоугольной формы Crest factor равен единице, для синусоидальных – 1,414. Ток, потребляемый типичным компьютерным источником питания из типичной настенной розетки, имеет Crest factor, равный 4. Эта величина получается из-за взаимодействия источника питания с синусоидальной волной напряжения в потребительской сети. Crest factor источника питания компьютера, работающего с ИБП, обычно ниже. Понижение Crest factor при работе с ИБП не вредит компьютерному источнику питания. В действительности, это заставляет его работать в более спокойном режиме. Во всех случаях Crest factor есть характеристика взаимодействия нагрузки и источника, поэтому она не имеет смысла применительно к свойствам отдельно взятых нагрузки или источника. Факторы, обычно приводящие к большим значениям Crest factor у ИБП, это: выходной импеданс на гармониках, выходные искажения, и ограничение по току. Хотя высокий уровень Crest factor у ИБП считается мерой выходной стабилизации и качества ИБП, различия в методиках измерений делает сравнение изделий по этому признаку бесполезным. Более предпочтительной является классификация по отклику выходного напряжения на включение нагрузки или по искажениям выходного напряжения под нагрузкой.
Крест-фактор ИБП / UPS (Crest Factor) Показатель, характеризующий способность ИБП питать нелинейную нагрузку, потребляющую импульсный ток. Определяется как отношение максимальной амплитуды импульсного тока в нелинейной нагрузке к амплитуде тока гармонической формы при эквивалентной потребляемой мощности.
LINE INTERACTIVE (линейно-интерактивные ИБП) Тип ИБП, сочетающих некоторые преимущества работы on-line ИБП с надежностью и эффективностью резервных (standby) ИБП. В линейно-интерактивных ИБП инвертер (INVERTER) всегда соединен с выходом. Инвертер работает параллельно со стабилизированным (conditioned) входным переменным напряжением при питании нагрузки и только подключает напряжение полной нагрузки, когда входное напряжение электросети исчезает. Из-за такого взаимодействия («interaction») с входным сетевым напряжением («линией», «line») эта архитектура и берет свое название. Инвертер обычно работает на низком напряжении, поддерживает регуляцию выходного напряжения и подзарядку аккумуляторов, до тех пор, пока он не потребуется для полного питания нагрузки при перебое в электросети. Линейно-интерактивные ИБП наиболее часто используются для защиты компьютерных сетей.
ON-LINE UPS (онлайновые ИБП) Один из многих типов ИБП. В ИБП этого типа нагрузка запитывается через постоянно действующий конвертер, который сам питается от источника постоянного тока, состоящего из аккумуляторов и мощного выпрямителя, включенных параллельно. В нормальных условиях, когда на входе есть переменное напряжение, входное напряжение конвертера снимается с выпрямителя, когда в электросети происходит отключение, входное напряжение снимается с аккумуляторов. В большинстве систем ИБП мощностью до 5 кВА, заявляемых как «on-line», на самом деле нет постоянно подключенного аккумулятора, но есть резервный преобразователь постоянного тока (DC-DC converter), включающийся при сбоях сети и дублирующий шину постоянного тока ИБП (UPS DC bus) от низковольтного аккумулятора.
POWER FACTOR (коэффициент мощности, коэффициент использования мощности) Число между 0 и 1, выражающее ту часть предоставляемой источником мощности (ВА), которая действительно потребляется нагрузкой переменного тока. В некоторых устройствах, например, моторах или компьютерах, ток, протекая через устройство, не передает ему полезной энергии. Это случается, если ток имеет частотные искажения (гармоники, HARMONICS), или же когда он не в фазе (PHASE) с напряжением, приложенным к устройству. Компьютеры возбуждают токи на гармониках (HARMONIC currents), что делает их power factor меньшим 1. Моторы создают несинфазные или реактивные (REACTIVE) токи, что делает их power factor также меньшим 1.
SAG (падение напряжения) Мгновенное 15-100%-ное снижение напряжения источника переменного тока. SAG может длиться от нескольких до нескольких сот миллисекунд. SAG продолжительностью более 10-20 мс может приводить к ошибкам в работе компьютерного оборудования.
SURGE (импульсная сетевая наводка, бросок напряжения, импульсная перегрузка, перенапряжение) Быстрое и кратковременное нежелательное перенапряжение, которое может возникать в цепи переменного тока, в цепях передачи данных или телефонных цепях. Длительность Surge может составлять от нескольких миллиардных до нескольких тысячных долей секунды (миллисекунд). Кратковременная перегрузка считается Surge, если ее пик больше допустимого предела безопасной работы для данной схемы/цепи. Для силовых цепей переменного тока Surge бывают более несколько сотен вольт, а в бинарных цепях они составляют несколько десятков вольт. Электронное оборудование, подключенное к цепи, в которой бывают Surge, может быть повреждено.
SURGE SUPPRESSOR (ограничитель перенапряжения, устройство для подавления импульсных сетевых наводок) Устройство для защиты оборудования от кратковременных перегрузок в сети переменного тока, в цепях данных, или в телефонных линиях. SURGE SUPPRESSOR может действовать, поглощая перегрузку (SURGE SUPPRESSOR шунтирующего типа) или препятствуя ее распространению (SURGE SUPPRESSOR последовательного типа), либо комбинируя эти два способа. Шунтирующий SURGE SUPPRESSOR имеет характерное напряжение среза (characteristic clamping voltage), которое обычно выбирается близким к максимальному напряжению безопасной работы схемы. Качество работы SURGE SUPPRESSOR определяется посредством приложения заданного тестового броска напряжения (например, одного из описанных в стандарте IEEE 587) и последующего измерения максимального напряжения, которое прошло к защищаемому устройству.
SHUTDOWN Процедура корректного завершения работы системы или подсистемы, с целью сохранения рабочих данных. Инициируется при переходе ИБП в режим работы от батарей через заданное пользователем время.
STANDBY POWER SYSTEM Резервная система питания. В общеупотребительной терминологии, это система, в которой штатным источником питания является потребительская сеть, а резервным (back up) источником является генератор переменного тока, работающий от дизельного, бензинового или газового двигателя. Резервным источником питания может быть также и преобразователь постоянного тока в переменный (инвертор, INVERTER), работающий за счет энергии аккумуляторов. Максимальное время переключения для такой системы, установленное NFPA, равно 1 минуте. Некоторые системы STANDBY ИБП производители называют SPS, т.е. STANDBY POWER SYSTEMs.
STANDBY UPS В этой схеме ИБП штатным источником энергии является отфильтрованное напряжение потребительской сети, а резервным является инвертор (INVERTER), питающийся от аккумуляторной батареи. Синонимом является OFF-LINE UPS.
кВА (Киловольт-амперы) Полная мощность оборудования, характеризует токи, например, текущие по проводам между ИБП и нагрузкой. По полной мощности с необходимым запасом 10-20% выбирается мощность ИБП.
кВт (Киловатты) Активная мощность оборудования, характеризует мощность, потребляемую нагрузкой. Исходя из активной мощности, в сочетании с необходимым временем работы выбирается емкость внешней батареи ИБП.
Ампер, А Единица измерения силы электрического тока. Ток равен одному Амперу при его протекании через проводник сопротивлением 1 Ом при приложенном напряжении 1 Вольт.
Аварийный (автономный) режим работы ИБП / UPS Режим, в котором электроснабжение оборудования обеспечивается за счет энергии запасенной в аккумуляторной батарее ИБП, преобразованной в переменное напряжение.
Активная мощность (действующая мощность) Термин, используемый для описания произведения эффективного значения тока, напряжения и коэффициента мощности. Выражается в Ваттах (Вт) или Киловаттах (кВт). Физически представляет собой мощность, реально потребляемую оборудованием.
Активная нагрузка Полезная мощность, отбираемая любой нагрузкой из электросети и преобразуемая в дальнейшем в любой вид энергии (механическую, тепловую, электрическую и т.п.). Единица измерения активной мощности: Ватт (Вт).
Бустер ИБП / UPS (Booster) Ступенчатый автоматический стабилизатор. Устройство, позволяющее повышать или понижать выходное напряжение за счет переключения обмоток автотрансформатора. Применяется в линейно-интерактивных ИБП.
Ватт, Вт Единица измерения активной мощности. Электрически определяется как мощность, выделяемая в нагрузке при приложенном к ней напряжении 1 Вольт и силе тока в 1 Ампер.
Вольтампер (ВА) или киловольтампер (кВА) Произведение среднеквадратических (эффективных) значений напряжения в вольтах или киловольтах и силы тока в амперах. Единица измерения полной мощности.
Время переключения ИБП / UPS Время перехода ИБП в автономный режим и обратно. У ИБП класса Off-line и Line-interactive составляет от 5 до 20 мсек, может вызывать сбои в подключенной нагрузке. В ИБП класса Оn-line время переключения не существует (равно нулю).
Входной изолирующий трансформатор ИБП (UPS) Трансформатор, включаемый во входную цепь ИБП для обеспечения гальванической развязки его внутренних узлов и входной электросети. Применяется во избежание короткого замыкания цепей ИБП, комплектуемого негерметичной аккумуляторной батареей с жидким электролитом, если существует вероятность его утечки. Также применяется при необходимости гальванической развязки байпасной цепи.
Выброс напряжения (перенапряжение) Повышение напряжения (не менее 0,008 с), которое может повлечь за собой преждевременный выход компонентов из строя.
Выходной коэффициент мощности ИБП / UPS Определяет допустимое соотношение полной и активной мощности на выходе инвертора ИБП. Например, выходной коэффициент мощности 0,8 показывает, что к ИБП с полной мощностью 100 кВА можно подключить оборудование с активной мощностью не более 80 кВт с коэффициентом мощности 0,8 (полная мощность оборудования составит 100 кВА). Но оборудование 80 кВт с коэффициентом мощности 0,7 к такому ИБП подключить уже не удастся, потому что его полная мощность составит 114 кВА.
Выходной изолирующий трансформатор ИБП (UPS) Трансформатор, включаемый в выходную цепь ИБП для обеспечения гальванической развязки между ИБП и его нагрузкой. В трехфазных системах применяется трансформатор «треугольник-звезда». Он образует выходную нейтраль нагрузки, полностью изолированную от входной нейтрали ИБП. Таким образом, удается полностью защититься от помех по входной нейтрали, широко распространенных на промышленных объектах.
Гальваническая развязка Схемотехническое решение, при котором электрические цепи не имеют замкнутой электрической связи между входом и выходом. Гальваническая развязка осуществляется трансформаторами или оптоэлектронными приборами.
Дельта-преобразование Принцип дельта-преобразования заключаются в том, что двойному преобразованию в ИБП / UPS подвергается не вся энергия, потребляемая от сети, а только ее часть (до 15%), необходимая для поддержания стабильного выходного напряжения (отсюда и такое название принципа), а это ведет к уменьшению потерь и естественно повышению КПД. Кроме этого значительно повышается входной коэффициент мощности ИБП.
Емкость аккумулятора Способность накапливать и отдавать электроэнергию постоянного тока. Определяет время автономной работы ИБП. Измеряется в Амперочасах или Ватточасах. В случае относительно быстрого разряда аккумулятора применяется более удобное понятие – мощность отдаваемая батареей при разряде до определенного порогового значения напряжения за определенный период времени.
Заземление (земля) Выравнивание потенциалов металлических поверхностей оборудования с потенциалом земли (нулевым) для обеспечения безопасности обслуживающего персонала, обеспечивается с помощью заземляющего проводника. Также служит для подавления синфазной помехи по фазному и нейтральному питающим проводникам. Правила выполнения заземления строго регламентируются в нормативной документации.
Зарядное устройство ИБП / UPS Часть ИБП, которая обеспечивает поддержание аккумуляторной батареи в заряженном состоянии. В современных ИБП зарядное устройство работает по сложному алгоритму, обеспечивающим максимальный срок эксплуатации аккумуляторной батареи ИБП, при условии рекомендованного диапазона температуры окружающей среды, и быстрый термокомпенсированный заряд.
Импульсный бросок напряжения Мгновенное значительное повышение напряжения, вызванное ударом молнии или случившееся в момент возобновления подачи напряжения. Броски напряжения могут проникать в электронное оборудование из электросети, по кабелям вычислительных сетей, последовательным линиям передачи данных или телефонным проводам и вызывать значительный ущерб.
Короткое замыкание Режим, при котором сопротивление нагрузки приближается к нулю. Ток в цепи в этом случае ограничивается выходным сопротивлением питающей сети и сопротивлением питающих проводников. В случае короткого замыкания на выходе ИБП ток ограничивается выходным инвертором ИБП или его выходным трансформатором. На практике токов короткого замыкания никогда не достигают, поскольку в цепях устанавливаются предохранители или автоматические размыкатели цепи.
КНИ входного тока ИБП / UPS Характеризует отклонения формы входного тока ИБП от синусоидальной. Чем больше значение этого параметра, тем хуже это для оборудования, подключенного к той же питающей сети и самой сети, в этом случае ухудшается электромагнитная совместимость, увеличивается нагрев проводов и т. д., кроме того, этот параметр напрямую влияет на запас по мощности ДГУ при согласовании ее работы с ИБП.
КНИ выходного напряжения ИБП / UPS Характеризует отклонения формы выходного напряжения от синусоидальной, обычно приводится для линейной (двигатели, некоторые виды осветительных приборов) и нелинейной нагрузки. Чем выше это значение, тем хуже качество выходного напряжения ИБП. Определяется как отношение выходной мощности устройства к потребляемой им мощности от сети.
КПД (эффективность) ИБП / UPS Отношение выходной мощности ИБП, отдаваемой в нагрузку (в кВт), к потребляемой им мощности от сети (в кВт). Чем выше это число, тем меньше потери мощности.
Критичная нагрузка 1. Нагрузка, чувствительная к неполадкам в электросети и нуждающаяся в специальном источнике питания, обеспечивающем требуемое качество электроэнергии (серверы, персональные компьютеры, телекоммуникационные сети и др.). 2. Оборудование, функционирование которого влияет на непрерывный технологический процесс или бизнес-процессы, простой такого оборудования или нарушение функционирования которого в результате сбоя электроснабжения может привести к финансовым или другим потерям.
Линейная нагрузка Нагрузка, в которой ток и напряжение связаны между собой линейным законом. Например: нагреватели, электролампы, электродвигатели и т.д.
Мощность электрическая Работа электрического тока в единицу времени. В цепи постоянного тока мощность равна произведению напряжения и тока. В цепи переменного тока различают полную мощность, активную мощность, реактивную мощность.
Мощность ИБП / UPS Мощность, которую может обеспечить ИБП для питания нагрузки. Различают полную (S) и активную (Р) мощности. Для компьютерных нагрузок их примерное соотношение составляет S [ВА]= 1,4*Р [Вт].
Мягкий старт ИБП / UPS Дополнительный способ улучшения совместимости ИБП и его питающей сети. При переключении ИБП из режима работы от батарей в режим работы от входной сети, нет «удара» по ней в момент переключения, нагрузка передается плавно. Чем больше значение времени, в течение которого возможна передача нагрузки на входную сеть, тем меньше это вызывает в ней «возмущений» и тем лучше для оборудования, подключенного к этой сети. Это свойство ИБП напрямую влияет на запас по мощности ДГУ при согласовании ее работы с ИБП.
Нелинейная нагрузка Нагрузка (оборудование), в которой ток и напряжение связаны между собой нелинейным законом (компьютер, монитор и т. д.), т.е. любая цепь, в которой присутствуют полупроводниковые элементы.
Нейтраль Один из проводников, условно считающийся обратным в пятипроводной, четырехпроводной или трехпроводной системе переменных токов. Потенциал этого проводника близок к потенциалу заземляющего проводника. В трехфазных сетях (пяти или четырехпроводных) с нелинейной нагрузкой, даже при условии равномерной загрузки всех трех фаз на нейтральный провод ложиться повышенная токовая нагрузка. Теоретически максимальный ток через нейтральный проводник может в 1,7 раза превышать ток в фазном проводнике.
Нормальный режим работы ИБП/ UPS Режим работы ИБП, при котором нагрузка питается за счет энергии, отбираемой из электросети, а аккумуляторные батареи отключены или подзаряжаются.
Основная гармоника Первая гармоника (50 Гц)
Падение напряжения Падение напряжения электросети более чем на 10%.
Полная мощность (кажущаяся мощность, кВА, ВА) Термин, используемый в случае, когда ток и напряжение находятся в разных фазах или имеют несинусоидальную форму, что обуславливает протекание реактивных (излишних) составляющих токов в цепях. В результате говорят о кажущейся мощности и выражают ее в Вольт-амперах (ВА) или Киловольт-амперах (кВА).
Период Время, в течение которого происходит полное изменение переменного тока или напряжения от нуля до положительного максимума, нуля, отрицательного максимума и снова до нуля. Количество периодов в секунду представляет собой частоту, величина которой выражается в Герцах (Гц). Для сети с частотой 50 Гц период составляет 20 мс.
Переменный ток Электрический ток, который периодически изменяет свое направление и амплитудное значение при протекании через проводник или контур. Величина переменного тока растет от нуля до максимального значения, затем возвращается к нулю, а далее происходит то же самое в противоположном направлении. Одно полное изменение происходит за один период или 360 градусов. В случае переменного тока с частотой 50 Герц изменение направления тока происходит 50 раз в секунду.
Постоянный ток Электрический ток, который течет только в одном направлении при данном напряжении. Величина постоянного тока обычно неизменна для конкретной нагрузки.
Реактивность Присутствует при наличии в цепи индуктивности и/или емкости.
Резервирование ИБП / UPS Методы построения системы бесперебойного электроснабжения, направленные на обеспечение бесперебойного электроснабжения защищаемого оборудования даже при неисправности ИБП или какой-либо его функциональной части. ИБП может иметь резервированные внутренние блоки (модульный ИБП) или резервирование достигается благодаря использованию нескольких ИБП, включаемых параллельно или последовательно.
Соединение звездой Метод соединения фаз в трехфазной системе. К средней точке может быть подключен четвертый или нейтральный проводник.
Соединение треугольником Трехфазное соединение, в котором начало каждой фазы соединено с концом следующей. Нагрузка подключается к углам треугольника. В некоторых случаях в каждой фазе делается центральный отвод, но наиболее часто он делается в одном плече, обеспечивая четырехпроводное соединение.
Среднеквадратичное значение (эффективное значение, RMS) Результат возведения в квадрат, усреднения и последующего извлечения квадратного корня. Используется для измерения переменного тока и напряжения. Приборы, измеряющие такое значение, имеют маркировку «True RMS».
Сухие контакты ИБП / UPS Контакты интерфейсного разъема ИБП, которые физически замыкаются или размыкаются в зависимости от состояния ИБП, т.е. изменяют свое сопротивление от бесконечности до нуля.
Термокомпенсированный заряд батареи ИБП / UPS Необходим для компенсации влияния температуры окружающей среды. Любое изменение температуры окружающей среды в том месте, где находятся батареи ИБП, должно приводить к изменению напряжения заряда батареи. Если этого не происходит, то батарея может оказаться перезаряженной или недозаряженной.
Трехфазность Три синусоидальные волны напряжения/тока с периодом 360 градусов и сдвигом между ними в 120 градусов. Трехфазная система может быть либо 4-, либо 5-проводной (3 фазовых проводника, один нейтральный и один заземляющий).
Ток (I) Направленное движение заряженных частиц. Постоянный ток течет от отрицательного полюса к положительному. Переменный ток меняет свое направление. Теоретически при расчете тока и мощности общепризнано направление от положительного полюса к отрицательному. Измеряется в Амперах.
Фаза Один из проводников в питающей сети. Потенциал этого проводника меняется с частотой 50 Гц относительно нейтрального проводника. В трехфазной питающей сети форма напряжения каждой фазы представляет собой синусоиду сдвинутую на 120o относительно других фаз.
Фильтрация напряжения Очищение или выделение основной кривой, в частности, синусоиды на фоне шумов и различных помех.
Холодный старт ИБП / UPS Способность ИБП включаться и обеспечивать питанием критичную нагрузку при отсутствии входного напряжения в питающей сети, получая электроэнергию от аккумуляторной батареи.
Частота напряжения Количество циклов изменения знака (полных периодов) напряжения или тока за 1 секунду. Измеряется в Герцах (Гц). Частота напряжения 50 Гц означает, что напряжение меняет свой знак 50 раз в секунду.
Шум Явление, вызываемое грозовым разрядом, переключением нагрузки, работой генераторов и прочими источниками помех и приводящее к отклонению формы напряжения в электросети от правильной синусоиды. Может быть причиной сбоев и ошибок в файлах программ и данных.
Электромагнитная совместимость Свойство оборудования не создавать помех работе другого оборудования.