Криптон что за элемент
Криптон как химический элемент таблицы Менделеева
Как был открыт Криптон
Такой химический элемент как криптон был обнаружен людьми относительно недавно. В 1894 был открыт первый из благородных газов, который сегодня известен как аргон. Джон Рэлей и Уильям Рамсей обнаружили его благодаря спектральному анализу и выделили из урановых руд. Из периодических законов таблицы Д.И. Менделеева они поняли, что должны быть еще элементы, и продолжили свои исследования.
Было проведено множество экспериментов над газами, метеоритами, минералами и вулканическими породами. Успехов эти эксперименты не приносили. Удача улыбнулась ученым при исследовании 15 литров сырого аргона. При фракционной перегонке сырого аргона был обнаружен осадок. Этот осадок появлялся при почти полном испарении сырого аргона. Его исследование показало наличие желтой и зеленой спектральной линии, то есть новые химические элементы. Название Криптон он получил от древнегреческого «скрытый». После очистки и дальнейшей перегонки У. Рамсей и У. Траверс отделили из смеси сырой криптон. Первые соединения криптона были обнаружены только в 1962 году. Это соединение являлось фторидом криптона.
Где и как добывают Криптон
После этого необходимо удалять соединения фтора. Для начала раствор обрабатывают микроволнами. Это делается для того, чтобы разорвать связи фтора. После чего раствор пропускают при температуре около 750°C через раствор содовой извести. Затем полученная смесь криптона и ксенона разъединяется в отдельной колонне, которая нагревается снизу, а сверху охлаждается. В результате этой процедуры на дне образуется ксенон, а в верху образуется криптон.
Распространенность Криптона
Распространенность такого химического элемента как криптон является очень неопределенной. С одной стороны, криптон является одним из самых редких элементов на Земле. Большая часть криптона содержится в атмосфере, где его количественное соотношение оценивается учеными как 1 часть на миллион. В земной коре его соотношение оценивается в 0.00019 частей на миллион. На нашей планете реже встречается только ксенон и некоторые радиоактивные элементы, которые являются промежуточными звеньями термоядерных реакций.
Если взять распространенность во Вселенной, то тут точные цифры неизвестны. Точно оценить его содержание на сегодняшний день не представляется возможным, потому что оценки осуществляются с помощью исследований метеоритов и спектрального анализа. В метеоритах его содержание приблизительно такое же как и на Земле. Тут есть одно «Но». Спектральный анализ показывает в некоторых местах Вселенной его содержание достаточно высокое. В пример можно привести так называемый «белый карлик», спектральный анализ которого показывает огромное содержание криптона. Чтобы было понятно, в этом «белом карлике» содержание криптона в 400 раз выше, чем в Солнце. Ученые пока не нашли объяснения такого высокого содержания криптона в этой звезде и Вселенной в целом.
Применение Криптона
Применение криптона является не очень широким. Большая часть его использования приходится на наполнитель для ламп накаливания. При использовании этого газа в качестве наполнителя лампочки вольфрамовая нить имеет меньший износ. Это позволяет создавать более высокую температуру отжига. Тем самым светоотдача этой лампочки значительно увеличивается. Так же он используется в качестве наполняющего газа в счетчиках Гейгера, стинцилляционных счетчиках и других электронных устройствах.
Еще одним использованием криптона является заполняющий газ в стеклопакетах. Даже несмотря на более дорогую цену, криптон лучше сохраняет тепло при такой же толщине стекла, чем обычно использующийся аргон. Плюс ко всему этот элемент в жидком состоянии используется в качестве калориметров в физических лабораториях при изучении частиц.
Интересные факты
Интересных фактов связанных с криптоном немного из-за того, что этот элемент еще плохо изучен. Но некоторые факты все же имеются. Например, криптон способен к поглощению рентгеновских лучей. Этот момент еще изучается учеными и уточняется возможно ли использовать смесь криптон-ксенон в качестве контрастного вещества в компьютерной томографии. Как и другие благородные газы, криптон не имеет биологического значения для жизни человека. В высоких концентрациях он вытесняет кислород и способен привести к удушью. Интересным моментом является то, что при давлении выше 3.9 бар криптон способен оказывать обезболивающее действие на организм человека.
Криптон №36 Kr
Впервые криптоном был назван газ, выделенный Уильямом Рамзаем из минерала клевеита. Но очень скоро пришлось это имя снять и элемент «закрыть». Английский спектроскопист Уильям Крукс установил, что газ не что иное, как уже известный по солнечному спектру гелий. Спустя три года, в 1898 г., название «криптон» вновь появилось, его присвоили новому элементу, новому благородному газу.
Открыл его опять же Рамзай, и почти случайно — «шел в дверь, попал в другую». Намереваясь выделить гелий из жидкого воздуха, ученый вначале пошел было по ложному следу: он пытался обнаружить гелий в высококипящих фракциях воздуха. Разумеется, гелия, самого низкокипящего из всех газов, там не могло быть, и Рамзай его не нашел. Зато он увидел в спектре тяжелых фракций желтую и зеленую линии в тех местах, где подобных следов не оставлял ни один из известных элементов.
Так был открыт криптон, элемент, имя которого в переводе с греческого значит «скрытный». Название несколько неожиданное для элемента, который сам шел в руки исследователя.
Родословная криптона
Известно, что гелий, радон, почти весь аргон и, вероятно, неон нашей планеты имеют радиогенное происхождение, т. е. они — продукты радиоактивного распада. А как обстоит дело с криптоном?
Среди известных природных ядерных процессов, порождающих криптон, наибольший интерес представляет самопроизвольное деление ядер урана и тория.
В 1939 г. Г. Н. Флеров и К. А. Петржак установили, что в природе (очень редко) происходит самопроизвольное расщепление ядер урана-238 на два осколка примерно равной массы. Еще реже таким же образом делятся ядра 232 Th и 235 U. Осколки — это атомы изотопов средней части периодической системы элементов. Будучи неустойчивыми («перегруженными» нейтронами), эти осколки проходят по цепи последовательных бета-распадов. Среди конечных продуктов распада есть и стабильные тяжелые изотопы криптона.
Подсчеты, однако, показывают, что радиоактивный распад (включая деление урана-235 медленными нейтронами) — не главный «изготовитель» криптона. За время существования Земли (если считать его равным 4,5 млрд. лет) эти процессы смогли выработать не более двух-трех десятых процента существующего на нашей планете элемента № 36. Откуда в таком случае основная его масса?
Сегодня на этот вопрос даются два обоснованных, но разных по смыслу ответа.
Часть ученых считает, что земной криптон возник в недрах планеты. Прародителями криптона были трансурановые элементы, некогда существовавшие на Земле, но теперь уже «вымершие». Следы их существования усматривают в том, что в земной коре есть элементы-долгожители нептуниевого радиоактивного ряда (ныне целиком искусственно воссозданного). Другой подобный след — микроколичества плутония и нептуния в земных минералах, хотя они могут быть и продуктами облучения урана космическими нейтронами.
В пользу этой гипотезы говорит тот факт, что искусственно полученные актиноиды (не все, но многие) — активные «генераторы» криптона. Их ядра самопроизвольно делятся намного чаще, чем ядра атомов урана. Сравните периоды полураспада по спонтанному делению: 8,04-10 15 лет — для урана-238 и всего 2000 лет — для калифорния-246. А для фермия и менделевия соответствующие периоды полураспада измеряются всего лишь часами.
Иного мнения придерживается другая группа ученых. На их взгляд, земной криптон (как и ксенон) пришел на Землю из Вселенной, в процессе зарождения Земли. Он присутствовал еще в протопланетном облаке, его сорбировала первичная земная материя, откуда он потом, при разогреве планеты, выделился в атмосферу.
Это мнение тоже опирается на факты. В его пользу говорит, в частности, то, что криптон — газ тяжелый, малолетучий и относительно легко конденсирующийся (в отличие от иных компонентов первичной атмосферы) вряд ли смог бы оставить Землю на первых фазах ее формирования.
Кто же прав? Скорее всего, правы обе стороны: криптон нашей планеты, вероятно, представляет собою смесь газов как космического, так и земного происхождения. По данным исследований последних лет, земного намного больше
Что же представляет собой эта смесь?
Глазами физика и химика
Газообразный криптон в 2,87 раза тяжелее воздуха, а жидкий — в 2,14 раза тяжелее воды. Криптон превращается в жидкость при — 153,9°С, а уже при — 156,6°С он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно: у этих атомов «замкнутые», целиком заполненные электронные оболочки. Молекула криптона одноатомна.
Криптон — первый из тяжелых благородных газов. Такое деление не искусственно. Обратите внимание на большой разрыв между значениями критических величин легких и тяжелых благородных газов. У первых они крайне низки, у вторых значительно выше. Так, точки кипения криптона и гелия разнятся, на 116,1°С. Сильно разнятся и другие важнейшие характеристики. Объяснить это логичнее всего характером сил межмолекулярного взаимодействия: с увеличением молекулярного веса благородного газа резко вырастает сила взаимопритяжения молекул.
Криптон — достаточно редкий и рассеянный газ. На Земле его больше всего в атмосфере — 3*10- 4 % (по весу). Содержание криптона в атмосфере очень медленно (даже в масштабах геологических эпох) нарастает: криптон «выдыхают» некоторые минералы.
Природный криптон состоит из шести стабильных изотопов: 78 Kr, 80 Kr, 82 Kr, 83 Kr, 84 Kr и 86 Kr. И все они есть в горных породах, природных водах и атмосфере. Обильнее прочих представлен 84Kr, на его долю приходится 56,9% атмосферного криптона.
В ядерных реакциях искусственно получены 18 радиоактивных изотопов криптона с массовыми числами от 72 до 95. Некоторые из этих изотопов нашли применение как радиоактивные индикаторы и генераторы излучения.
Особо важным оказался криптон-85 — почти чистый бета-излучатель с периодом полураспада 10,3 года.
Спектр криптона изобилует линиями во всем видимом диапазоне, особенно в коротковолновой области. Самые яркие линии расположены между 4807 и 5870 А°, оттого в обычных условиях криптон дает зеленовато-голубое свечение.
Благодаря хорошей растворимости в жидкостях организма криптон при парциальном давлении 3,5 атм уже оказывает наркотическое действие на человека.
Химия криптона
В атоме криптона 36 электронов, распределенных на четырех энергетических уровнях (оболочках). Это обстоятельство в физическом и отчасти химическом смысле приближает криптон к обычным, «нормальным» газам. Почему?
В атомах тяжелых благородных газов внешние электронные оболочки замкнутые. Но будучи сравнительно отдаленными от ядра, оболочки получают некоторую автономность. Чем тяжелее атомы инертного газа, тем больше их способность объединяться с некоторыми другими атомами.
Химия «инертных» газов (теперь без кавычек не обойтись) — новая область науки. Но возникла она не на голом месте. Еще в первой четверти XX в. ученые наблюдали образование в электрическом разряде ионизированных молекул инертных газов и как будто бы соединений этих газов с другими элементами. Вне разряда эти образования быстро распадались, и первые сообщения о соединениях инертных газов казались малообоснованными.
Позже стали известны кристаллические клатратные соединения криптона с H2O, H2S, SO2, галогеноводородами, фенолами, толуолом и другими органическими веществами. Они устойчивы даже при комнатной температуре под давлением 2-4 атм. Но еще в 40-х годах советский ученый Б. А. Никитин показал, что в клатратных соединениях связь молекулярная, в них валентные электроны не взаимодействуют.
В 1933 г. Лайнус Полинг, позже дважды лауреат Нобелевской премии, развивая представление о валентных связях, предсказал возможность существования фторидов криптона и ксенона. Но лишь в 1962 г. было получено первое такое соединение — гексафтороплатинат ксенона. Вслед за тем были синтезированы фториды криптона, ксенона, радона и многочисленные их производные.
Разумеется, соединения криптона и других благородных газов получить не легко. Так, кристаллический KrF2 был получен в результате воздействия тихого электрического разряда на смесь из фтора, криптона и аргона в молярном отношении 1 : 70 : 200. Условия реакции: давление — 20 мм ртутного столба, температура — минус 183°С.
Свойства дифторида криптона достаточно обычны: при комнатной температуре он неустойчив, но при температуре сухого льда (— 78°С) его можно хранить очень долго. И не только хранить, а и исследовать взаимодействие этих бесцветных кристаллов с другими веществами. Дифторид криптона — весьма активный окислитель. Он вытесняет хлор из соляной кислоты и кислород из воды. Реагируя с органическими соединениями, он не только окисляет их — иногда при этом происходит замена хлора на фтор в органической молекуле. Впрочем, многие органические вещества, например этиловый спирт, от соприкосновения с дифторидом криптона воспламеняются. Через фторид криптона получены соединения этого элемента с переходными металлами; во всех этих соединениях есть и фтор. Общая формула таких соединений KrF+MeF6-. Исключения составляют соединения мышьяка и сурьмы: Kr2F3+AsF6-, Kr2F3+SbF6— и KrF+Sb2F6-. В реакциях с дифторидом криптона как очень сильным окислителем были получены некоторые уникальные неорганические соединения — пентафторид золота AuF5, гептафторид брома BrF7, перброматы.
Извлечение из воздуха
Криптон получают из воздуха. Но чтобы получить литр элемента № 36, приходится переработать более миллиона литров воздуха. Тем не менее современные масштабы производства кислорода позволяют попутно извлекать довольно значительное и с каждым годом возрастающие количества криптона.
Как наименее летучие компоненты воздуха, криптон и ксенон скапливаются в самой «теплой» части воздухоразделительного аппарата вместе с жидким кислородом. Из него-то и выделяют элемент № 36.
Ожиженную кислородную фракцию направляют в ректификационную колонну, нижняя часть, или «пристройка», которой (конденсатор) охлаждается жидким азотом. Здесь получается «бедный» криптоновый концентрат, содержащий 0,1-0,2% Кг; этот «бедняк» в 400 раз богаче криптоном, чем исходный кислород.
Прежде чем продолжить ректификацию, «бедный» концентрат очищают от метана, ацетилена и прочих углеводородов. Такая операция необходима, чтобы исключить опасность взрыва на последующих стадиях отделения криптона. Микропримеси углеводородов в воздухе есть всегда. Причины их появления: испарение нефтепродуктов, утечка природного газа, бактериальный распад органических остатков и, наконец, промышленные выбросы.
В контактных аппаратах при 700°С в присутствии катализатора — CuO или Al2O3 — большая часть углеводородов выгорает. Очищенную смесь кислорода и криптона снова превращают в жидкость и отправляют во вторую ректификационную колонну. Здесь получают уже богатый концентрат — в нем 10-20% криптона. Но параллельно опять возрастает содержание углеводородов. И опять смесь переводится в газообразное состояние, и опять следует выжигание углеводородов. Затем весь этот цикл повторяется еще раз.
Окончательная криптоно-ксеноновая смесь содержит 90-98% Кг+Хе. Для тонкой очистки этой смеси остатки кислорода связывают водородом в воду, а примесь азота удаляют, пропуская смесь над стружками магния, — азот реагирует с ним, образуя нитрид.
Последний этап — разделение криптона и ксенона. Жидкую смесь опять превращают в газ и направляют в адсорбер с активированным углем. Здесь при температуре 65-75°С ксенон и некоторое количество криптона поглощаются углем, а выходящий из адсорбера газ содержит по меньшей мере 97% криптона.
Производство электроламп — главный потребитель криптона. Небольшие грибовидные лампы с криптоновым (или криптоноксеноновым) наполнением постепенно теснят лампы аргоноазотного наполнения, которые в свое время вытеснили пустотные и азотонаполненные лампы.
Достоинства криптона в лампах накаливания очевидны: он 2 в 2,1 раза тяжелее аргона и почти вдвое хуже проводит тепло. В более плотном газе замедляется распыление раскаленной вольфрамовой нити — это увеличивает стабильность светового потока. Малая же теплопроводность криптона способствует увеличению доли видимого излучения в общем потоке лучистой энергии. Криптоновое наполнение в сравнении с аргоновым повышает мощность ламп на 5-15% и сроки службы на 40-170%. Вдобавок наполовину уменьшается объем колбы.
Криптоном заполняют и газосветные трубки низкого давления — преимущественно рекламные. Используют этот газ и в конструкциях ламп высокого давления. Яркий белый (с розоватым оттенком) свет таких ламп нужен в лакокрасочной и текстильной промышленности, при освещении сцен телевизионных студий, при киносъемках. Некоторые из таких ламп служат мощными источниками инфракрасного излучения.
Главное назначение криптона сегодня — «светить всегда, светить везде до дней последних донца. »
САМАЯ ПОСТОЯННАЯ. Еще недавно эталоном метра был платиноиридиевый стержень, хранящийся в Севре близ Парижа. Но с течением времени росла необходимость в точности линейных измерений. Драгоценная палка как эталон уже не удовлетворяла, и в 1960 г. заключили международное соглашение, определяющее метр, как 1 650 763,73 длины волны в вакууме излучения, соответствующего оранжевой линии стабильного изотопа криптон-86.
КРИПТОН — В ЗЕМЛЮ. Развитие ядерной энергетики обострило вопрос захоронения радиоактивных отходов, в том числе и криптона-85. Чтобы исключить выброс его в атмосферу и связанную с этим радиационную опасность, предложено закачивать этот газ под землю в пористые породы. Для этой цели пригодны, в частности, пласты выработанных газовых месторождений. Этот способ применяют на практике с середины 50-х годов.
«АТОМНЫЕ ЛАМПЫ». В 1957 г. на некоторых железных дорогах и рудниках США появились так называемые атомные лампы — предупредительные светящиеся знаки, не нуждающиеся в электропитании. В этих лампах есть радиоизотопы криптона, в основном 85 Kr; их излучение вызывает свечение специального состава, нанесенного на внутреннюю поверхность рефлектора. Свет такой лампы виден на расстоянии 500 м.
ЧТО ГОВОРИТ ТЕОРИЯ. Открытие истинных химических соединений криптона, ксенона и радона не повлекло за собой коренной ломки наших представлений о химической связи. Сдвинулись лишь акценты. Вот, в общих чертах, две трактовки связи в молекуле дифторида криптона. При контакте с таким активным партнером как фтор, электроны атома криптона переходят с р-орбитали на вакантную d-орбиталь; это ведет к образованию гибридной pd-орбитали, возникает ковалентная связь между «партнерами».
Вторая трактовка: р-орбиталь атома криптона, несущая два электрона, вступает во взаимодействие с двумя одноэлектронными орбиталями атома фтора. Возникает смешанная ковалентно-ионная делокализованная связь.
Криптон
Содержание
История
В 1898 году английский учёный Уильям Рамзай выделил из жидкого воздуха, предварительно удалив кислород, азот и аргон, смесь, в которой спектральным методом были открыты два газа: криптон (от греч. κρυπτός — «скрытый», «секретный») и ксенон («чуждый», «необычный»).
Нахождение в природе
Получение криптона из воздуха является энергоёмким процессом. Для получения единицы объёма криптона ректификацией сжиженного воздуха нужно переработать более миллиона единиц объёмов воздуха.
В литосфере Земли стабильные изотопы криптона (через цепочку распадов нестабильных нуклидов) образуются при спонтанном ядерном делении долгоживущих радиоактивных элементов (торий, уран), этот процесс обогащает атмосферу этим газом. В газах ураносодержащих минералов содержится 2,5—3,0 % криптона (по массе).
Определение
Качественно криптон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 557,03 нм и 431,96 нм ). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.
Физические свойства
Энергия ионизации 13,9998 эВ ( Kr 0 → Kr + ), 24,37 эВ ( Kr + → Kr 2+ ).
Растворимость в воде при стандартном давлении 1 бар равна 0,11 л/кг (0 °C), 0,054 л/кг (25 °C). Образует с водой клатраты состава Kr·5,75H2O, разлагающиеся при температуре выше −27,7 °C. Образует клатраты также с некоторыми органическими веществами (фенол, толуол, ацетон и др.).
Химические свойства
Криптон химически инертен. В жёстких условиях реагирует со фтором, образуя дифторид криптона. Относительно недавно было получено первое соединение со связями Kr−O (Kr(OTeF5)2).
В 1965 году было заявлено о получении соединений состава KrF4, KrO3·H2O и BaKrO4. Позже их существование было опровергнуто.
В 2003 году в Финляндии было получено первое соединение со связью C−Kr (HKrC≡CH — гидрокриптоацетилен) путём фотолиза криптона и ацетилена на криптонной матрице.
Изотопы
На данный момент известны 31 изотоп криптона и ещё 10 возбуждённых изомерных состояний некоторых его нуклидов. В природе криптон представлен пятью стабильными нуклидами и одним слаборадиоактивным: 78 Kr (изотопная распространённость 0,35 %), 80 Kr (2,28 %), 82 Kr (11,58 %), 83 Kr (11,49 %), 84 Kr (57,00 %), 86 Kr (17,30 %).
Получение
Получается как побочный продукт в виде криптоно-ксеноновой смеси в процессе разделения воздуха на промышленных установках.
В процессе разделения воздуха методом низкотемпературной ректификации производится постоянный отбор фракции жидкого кислорода, содержащей жидкие углеводороды, криптон и ксенон (отбор фракции кислорода с углеводородами необходим для обеспечения взрывобезопасности).
Для извлечения Kr и Xe из отбираемой фракции удаляют углеводороды в каталитических печах при t=500—600 °C и направляют в дополнительную ректификационную колонну для удаления кислорода, после обогащения Kr+Xe смеси до 98—99 % её повторно очищают в каталитических печах от углеводородов, а затем в блоке адсорберов, заполненных силикагелем (или другим адсорбентом).
После очистки смеси газов от остатков углеводородов и влаги её закачивают в баллоны для транспортировки на установку разделения Kr и Xe (это связано с тем, что не на каждом предприятии, эксплуатирующем воздухоразделительные установки, существует установка разделения Kr и Xe).
Дальнейший процесс разделения Kr и Xe на чистые компоненты происходит по следующей цепочке: удаление остатков углеводородов на контактной каталитической печи, заполненной окисью меди при температуре 300—400 °C, очистка от влаги в адсорбере, заполненном цеолитом, охлаждение в теплообменнике, подача на разделение в ректификационной колонне № 1, где из кубового пространства (нижняя часть ректификационной колонны) колонны отбирается жидкий Xe и направляется в колонну № 3, где он доочищается от примеси Kr, а затем выкачивается при помощи мембранного компрессора в баллоны. Газообразный Kr отбирается из-под крышки конденсатора колонны № 1 и направляется в колонну № 2, где он очищается от остатков азота, кислорода, аргона (температура их кипения значительно ниже температуры кипения криптона). Из кубового пространства колонны № 2 отбирается чистый криптон и закачивается мембранным компрессором в баллоны.
Процесс разделения смеси криптона и ксенона может вестись как непрерывно, так и циклично, по мере накопления сырья (смеси) для переработки.
Применение
Биологическая роль
Воздействие криптона на живые организмы изучено плохо. Исследуются возможности его использования в водолазном деле в составе дыхательных смесей и при повышенном давлении как средство для анестезии.
Физиологическое действие
Большое количество вдыхаемого криптона при недостаточном количестве кислорода может привести к удушью.
При вдыхании газовых смесей, содержащих криптон, при давлении более 3,5 атмосфер наблюдается наркотический эффект.