Кровь под микроскопом что можно увидеть

Кровь человека под микроскопом

Хотели ли вы когда-нибудь увидеть своими глазами, как выглядит кровь человека под микроскопом? Ведь это же одна из наиболее интересных тканей организма! Она состоит из множества клеток разных типов и выполняет жизненно важные функции: транспортную (переносит кислород по телу), защитную (специальные клетки устраняют вредоносные микроорганизмы) и гомеостатическую (поддерживает постоянство внутренней среды организма).

Чтобы вы смогли рассмотреть, как устроена кровь человека, микроскоп должен давать не менее 1000-кратного увеличения. Учитывайте это при его выборе.

Как выглядит кровь под микроскопом?

При большом увеличении можно увидеть все три типа клеток крови.

Эритроциты – красные тельца дисковидной формы, которые транспортируют кислород по телу человека. Диаметр – 7–10 мкм. Цвет этих клеток обусловлен содержанием в них гемоглобина – специального вещества, которое позволяет им переносить молекулы кислорода. Эти клетки наиболее многочисленны, поэтому, рассматривая кровь человека под микроскопом, их вы увидите в первую очередь.

Лейкоциты – клетки округлой формы размером от 7 до 20 мкм. Именно они и формируют иммунную систему, защищающую организм от болезнетворных вирусов, бактерий и грибков. Существует несколько разновидностей лейкоцитов: лимфоциты, моноциты, базофилы, нейтрофилы и эозинофилы.

Тромбоциты – плоские бесцветные клетки, отвечающие за свертываемость крови. У них наименьшие размеры – от 2 до 4 мкм, – поэтому подробно рассмотреть их можно только с помощью профессионального микроскопа.

Кровь под микроскопом – фото

Если у вас нет возможности приобрести микроскоп, вы можете увидеть многочисленные фото клеток крови в интернете. Многие из них сделаны с использованием профессиональной оптической и фототехники, поэтому очень детальны и дают возможность узнать все тонкости клеточного строения крови.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть
Кровь человека под микроскопом, 150x

Но никакие фотографии не могут заменить настоящее изучение микропрепарата в микроскоп! И если вы – любитель постигать новое, задумайтесь о долгожданной покупке оптической техники и откройте для себя все тайны микромира, не видимого невооруженным глазом.

Если же вы хотите поэкспериментировать и сделать фото крови под микроскопом самостоятельно, для начала вам хватит даже смартфона или фотоаппарата начального уровня. С помощью адаптера вы сможете подсоединить гаджет к микроскопу и сделать красочные снимки.

4glaza.ru
Сентябрь 2017

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Источник

Клинический анализ крови: от светового микроскопа к гематологическим анализаторам

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Общий клинический анализ крови – это самый распространенный диагностический тест, который назначает пациенту врач. За последние десятилетия технология этого рутинного, но очень информативного исследования проделала колоссальный рывок – она стала автоматической. В помощь врачу лабораторной диагностики, орудием труда которого был обычный световой микроскоп, пришли высокотехнологичные автоматические гематологические анализаторы.

В этом посте мы расскажем, что именно происходит внутри «умной машины», видящей нашу кровь насквозь, и почему ей следует верить. Мы будем рассматривать физику процессов на примере гематологического анализатора UniCel DxH800 мирового бренда Beckman Coulter. Именно на этом оборудовании выполняются исследования, заказанные в сервисе лабораторной диагностики LAB4U.RU. Но для того, чтобы понять технологию автоматического анализа крови, мы разберемся с тем, что видели врачи-лаборанты под микроскопом и как они интерпретировали эту информацию.

Параметры анализа крови

Итак, в крови содержится три вида клеток:

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

При проведении общего анализа крови производят подсчет количества эритроцитов, тромбоцитов и лейкоцитов. С лейкоцитами сложнее: их несколько видов, и каждый вид выполняет свою функцию. Выделяют 5 разных видов лейкоцитов:

Помимо количественных показателей, крайне важна морфология клеток. Изменение их обычной формы и размеров также свидетельствует о наличии определенных патологических процессов в организме.

Важный и наиболее известный показатель – количество в крови гемоглобина – сложного белка, обеспечивающего поступление кислорода к тканям и выведение углекислого газа. Концентрация гемоглобина в крови – главный показатель при диагностике анемий.

Еще один из важных параметров – это скорость оседания эритроцитов (СОЭ). При воспалительных процессах у эритроцитов появляется свойство слипаться друг с другом, образуя небольшие сгустки. Обладая большей массой, слипшиеся эритроциты под действием силы тяжести оседают быстрее, чем одиночные клетки. Изменение скорости их оседания в мм/ч является простым индикатором воспалительных процессов в организме.

Как было: скарификатор, пробирки и микроскоп

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Вспомним, как раньше сдавали кровь: болезненный прокол подушечки скарификатором, бесконечные стеклянные трубочки, в которые собирали драгоценные капли выжатой крови. Как лаборант одним стёклышком проводил по другому, где находилась капля крови, царапая на стекле номер простым карандашом. И бесконечные пробирки с разными жидкостями. Сейчас это уже кажется какой-то алхимией.

Кровь брали именно из безымянного пальца, на что были вполне серьезные причины: анатомия этого пальца такова, что его травмирование дает минимальную угрозу сепсиса в случае инфицирования ранки. Забор крови из вены считался куда более опасным. Поэтому анализ венозной крови не был рутинным, а назначался по необходимости, и в основном в стационарах.

Стоит отметить, что уже на этапе забора начинались значительные погрешности. Например, разная толщина кожи дает разную глубину укола, вместе с кровью в пробирку попадала тканевая жидкость – отсюда изменение концентрации крови, кроме того, при давлении на палец клетки крови могли разрушаться.

Помните ряд пробирок, куда помещали собранную из пальца кровь? Для подсчета разных клеток действительно нужны были разные пробирки. Для эритроцитов – с физраствором, для лейкоцитов – с раствором уксусной кислоты, где эритроциты растворялись, для определения гемоглобина – с раствором соляной кислоты. Отдельный капилляр был для определения СОЭ. И на последнем этапе делался мазок на стекле для последующего подсчета лейкоцитарной формулы.

Анализ крови под микроскопом

Для подсчета клеток под микроскопом в лабораторной практике использовался специальный оптический прибор, предложенный еще в ХIX веке русским врачом, именем которого этот прибор и был назван – камера Горяева. Она позволяла определить количество клеток в заданном микрообъеме жидкости и представляла собой толстое предметное стекло с прямоугольным углублением (камерой). На нее была нанесена микроскопическая сетка. Сверху камера Горяева накрывалась тонким покровным стеклом.

Эта сетка состояла из 225 больших квадратов, 25 из которых были разделены на 16 малых квадратов. Эритроциты считались в маленьких исчерченных квадратах, расположенных по диагонали камеры Горяева. Причем существовало определенное правило подсчета клеток, которые лежат на границе квадрата. Расчет числа эритроцитов в литре крови осуществлялся по формуле, исходя из разведения крови и количества квадратов в сетке. После математических сокращений достаточно было посчитанное количество клеток в камере умножить на 10 в 12-й степени и внести в бланк анализа.

Лейкоциты считали здесь же, но использовали уже большие квадраты сетки, поскольку лейкоциты в тысячу раз больше, чем эритроциты. После подсчета лейкоцитов их количество умножали на 10 в 9-й степени и вносили в бланк. У опытного лаборанта подсчет клеток занимал в среднем 3-5 мин.

Методы подсчета тромбоцитов в камере Горяева были очень трудоемки из-за малой величины этого вида клеток. Оценивать их количество приходилось только на основе окрашенного мазка крови, и сам процесс был тоже весьма трудоемким. Поэтому, как правило, количество тромбоцитов рассчитывали только по специальному запросу врача.

Лейкоцитарную формулу, то есть процентный состав лейкоцитов каждого вида в общем их количестве мог определять только врач – по результатам изучения мазков крови на стеклах.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Визуально определяя находящиеся в поле зрения различные виды лейкоцитов по форме их ядра, врач считал клетки каждого вида и общее их количество. Насчитав 100 в совокупности, он получал требуемое процентное соотношение каждого вида клеток. Для упрощения подсчета использовались специальные счетчики с отдельными клавишами для каждого вида клеток.

Примечательно, что такой важный параметр, как гемоглобин, определялся лаборантом визуально (!) по цвету гемолизированной крови в пробирке с соляной кислотой. Метод был основан на превращении гемоглобина в солянокислый гематин коричневого цвета, интенсивность окраски которого пропорциональна содержанию гемоглобина. Полученный раствор солянокислого гематина разводили водой до цвета стандарта, соответствующего известной концентрации гемоглобина. В общем, прошлый век

Как стало: вакуумные контейнеры и гематологические анализаторы

Начнем с того, что сейчас полностью поменялась технология забора крови. На смену скарификаторам и стеклянным капиллярам с пробирками пришли вакуумные контейнеры. Использующиеся теперь системы забора крови малотравматичны, процесс полностью унифицирован, что значительно сократило процент погрешностей на этом этапе. Вакуумные пробирки, содержащие консерванты и антикоагулянты, позволяют сохранять и транспортировать кровь от точки забора до лаборатории. Именно благодаря появлению новой технологии стало возможным сдавать анализы максимально удобно – в любое время, в любом месте.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

На первый взгляд, автоматизировать такой сложный процесс, как идентификация клеток крови и их подсчет, кажется невозможно. Но, как обычно, все гениальное просто. В основе автоматического анализа крови лежат фундаментальные физические законы. Технология автоматического подсчета клеток была запатентована в далеком 1953 году американцами Джозефом и Уолессом Культерами. Именно их имя стоит в название мирового бренда гематологического оборудования Bеckman&Coulter.

Подсчет клеток

Апертурно-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете количества и оценке характера импульсов, возникающих при прохождении клетки через отверстие малого диаметра (апертуру), по обе стороны которого расположены два электрода. При прохождении клетки через канал, заполненный электролитом, возрастает сопротивление электрическому току. Каждое прохождение клетки сопровождается появлением электрического импульса. Чтобы выяснить, какова концентрация клеток, необходимо пропустить через канал определенный объем пробы и сосчитать количество появившихся импульсов. Единственное ограничение – концентрация пробы должна обеспечивать прохождение через апертуру только одной клетки в каждый момент времени.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

За прошедшие более 60 лет технология автоматического гематологического анализа прошла большой путь. Вначале это были простые счетчики клеток, определяющие 8-10 параметров: количество эритроцитов (RBC), количество лейкоцитов (WBC), гемоглобин (Hb) и несколько расчетных. Такими были анализаторы первого класса.

Второй класс анализаторов определял уже до 20 различных параметров крови. Они существенно выше по уровню в дифференциации лейкоцитов и способны выделять популяции гранулоцитов (эозинофилы + нейтрофилы + базофилы), лимфоцитов и интегральной популяции средних клеток, куда относились моноциты, эозинофилы, базофилы и плазматические клетки. Такая дифференциация лейкоцитов успешно использовалась при обследовании практически здоровых людей.

Самыми технологичными и инновационными анализаторами на сегодняшний день являются машины третьего класса, определяющие до сотни различных параметров, проводящие развернутое дифференцирование клеток, в том числе по степени зрелости, анализирующие их морфологию и сигнализирующие врачу-лаборанту об обнаружении патологии. Машины третьего класса, как правило, снабжены еще и автоматическими системами приготовления мазков (включая их окраску) и вывода изображения на экран монитора. К таким передовым гематологическим системам относятся оборудование BeckmanCoulter, в частности система клеточного анализа UniCel DxH 800.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Современные аппараты BeckmanCoulter используют метод многопараметрической проточной цитометрии на основе запатентованной технологии VCS (Volume-Conductivity-Scatter). VCS-технология подразумевает оценку объема клетки, ее электропроводимость и светорассеяние.

Первый параметр – объем клетки – измеряется с использованием принципа Культера на основе оценки сопротивления при прохождении клеткой апертуры при постоянном токе. Величину и плотность клеточного ядра, а также ее внутренний состав определяют с помощью измерения ее электропроводности в переменном токе высокой частоты. Рассеяние лазерного света под разными углами позволяет получить информацию о структуре клеточной поверхности, гранулярности цитоплазмы и морфологии ядра клетки.

Полученные по трем каналам данные комбинируются и анализируются. В результате клетки распределяются по кластерам, включая разделение по степени зрелости эритроцитов и лейкоцитов (нейтрофилов). На основе полученных измерений этих трех размерностей определяется множество гематологических параметров – до 30 в диагностических целях, более 20 в исследовательских целях и более ста специфичных расчетных параметров для узкоспециализированных цитологических исследований. Данные визуализируются в 2D- и 3D-форматах. Врач-лаборант, работающий с гематологическим анализатором BackmanCoulter, видит результаты анализа на мониторе примерно в таком виде:

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

А далее принимает решение – надо ли их верифицировать или нет.

Стоит ли говорить, что информативность и точность современного автоматического анализа во много раз выше мануального? Производительность машин подобного класса – порядка сотни образцов в час при анализе тысяч клеток в образце. Вспомним, что при микроскопии мазка врачом анализировалось только 100 клеток!

Однако несмотря на эти впечатляющие результаты, именно микроскопия до сих пор пока остается «золотым стандартом» диагностики. В частности, при выявлении аппаратом патологической морфологии клеток образец анализируется под микроскопом вручную. При обследовании больных с гематологическими заболеваниями микроскопия окрашенного мазка крови проводится только вручную опытным врачом-гематологом. Именно так, вручную, дополнительно к автоматическому подсчету клеток, выполняется оценка лейкоцитарной формулы во всех детских анализах крови по заказам, сделанным с помощью лабораторного онлайн-сервиса LAB4U.RU.

Вместо резюме

Технологии автоматизированного гематологического анализа продолжают активно развиваться. По существу они уже заменили микроскопию при выполнении рутинных профилактических анализов, оставив ее для особо значимых ситуаций. Мы имеем в виду детские анализы, анализы людей, имеющих подтвержденные заболевания, особенно гематологические. Однако в обозримом будущем и на этом участке лабораторной диагностики врачи получат аппараты, способные самостоятельно выполнять морфологический анализ клеток с использованием нейронных сетей. Снизив нагрузку на врачей, они в то же время повысят требования к их квалификации, поскольку в зоне принятия решений человеком останутся только нетипичные и патологические состояния клеток.

Количество информативных параметров анализа крови, увеличившиеся многократно, поднимает требования к профессиональной квалификации и врача-клинициста, которому необходимо анализировать сочетания значений массы параметров в диагностических целях. На помощь врачам этого фронта идут экспертные системы, которые, используя данные анализатора, предоставляют рекомендации по дальнейшему обследованию пациента и выдают возможный диагноз. Такие системы уже представлены на лабораторном рынке. Но это уже тема отдельной статьи.

Источник

Клетки крови человека под микроскопом

Если вы рассмотрели все доступные предметы под микроскопом, то сейчас самое время усложнить технику наблюдения и расширить исследуемые объекты. С помощью прибора можно заглянуть в ту часть природы, из которой состоим мы. Рассмотрим, как выглядят наши клетки крови под микроскопом.

Чтобы исследовать кровь, используют разные методы окраски материала: по Романовскому-Гимзе (самый распространенный), по Маю-Грюнвальду, по Паппенгейму или по Райту. Окраска помогает выделить структуру клетки и способствует более детальному ее рассмотрению. Для этого нужно приобрести готовый красящий раствор или порошок, состоящий из азура и эозина. Они всегда есть в продаже в специализированных магазинах.

Исследуют кровь в домашних условиях с помощью светового микроскопа, используя разное увеличение. Например, при 150х можно рассмотреть множество мелких клеток.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

При среднем увеличении от 400х – 600х различаются эритроциты и среди них лейкоциты.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Для более глубокого изучения используют увеличение от 1000х и более. В этом случае можно детально рассмотреть структуру каждой клетки.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Как выглядят клетки крови под микроскопом?

Наша кровь состоит из нескольких видов клеток, выполняющих три основные функции:

Эритроциты под микроскопом

Самая многочисленная группа круглых клеток — эритроциты. Глядя в микроскоп, вы их увидите сразу. Эритроциты переносят кислород ко всем клеткам организма и имеют розовый цвет.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Лейкоциты под микроскопом

Среди огромного количества эритроцитов вы увидите лейкоциты: лимфоциты, моноциты, базофилы, нейтрофилы и эозинофилы. Подробно их можно разглядеть при увеличении не менее 1000х. Лейкоциты защищают организм человека от различных заболеваний, вызванных вирусами, бактериями, грибками. В борьбе с ними многие лейкоциты погибают.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Тромбоциты под микроскопом

Тромбоциты отвечают за свертываемость крови. Это очень маленькие круглые клетки. Если у вас профессиональный микроскоп с увеличением больше 1000х, то вы их точно увидите.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Мы предоставили небольшой материал о том, как выглядят клетки крови человека под микроскопом с фото, но настоящее исследование с использованием собственного прибора этого не заменит. Если микроскопия станет вашим хобби, то вы откроете для себя потрясающие вещи! Например, вы когда-нибудь задумывались над тем, почему СОЭ (скорость оседания эритроцитов) выше нормы у больного человека? Рассмотрите воспаленную кровь и найдете ответ! Сколько удивительных открытий можно сделать прямо сейчас!

Здесь даже не нужно покупать очень сложное и дорогостоящее оборудование (пусть этим занимаются лаборатории!), но стоит задуматься о приобретении доступной оптической техники среднего класса. Такая покупка даст потрясающую возможность открыть для себя тайны микромира, не доступного нашему глазу!

Источник

Что они делают с нашей кровью? Это уже клиника!

Что они делают с нашей кровью? Это уже клиника!

Автор
Редакторы

Инфографика на конкурс «био/мол/текст»: Клинический анализ крови — самый распространенный лабораторный тест, назначаемый врачом, когда мы приходим на прием и жалуемся на плохое самочувствие. «Кровь из пальца, завтра с 8:00 до 9:30, натощак, N-ный кабинет», — такую фразу неизменно слышали несколько поколений. Однако технология исследования крови претерпела большие изменения за последние десятилетия и прошла путь от ручных методов к автоматическим. Разбираемся, как анализировали кровь вашей бабушки и почему сейчас все делается по-другому.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2019.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Что будем исследовать?

Кровь — жидкая соединительная ткань организма, состоящая из плазмы и трех типов форменных элементов: эритроцитов, тромбоцитов и лейкоцитов. Лейкоциты, в свою очередь, бывают с гранулами в цитоплазме — это нейтрофилы, эозинофилы и базофилы, — и без гранул — лимфоциты и моноциты. Для того чтобы отличить патологию от нормы, нужно знать, какова концентрация клеток крови, как они выглядят и какую функцию выполняют. Пришло время вспомнить, с кем мы имеем дело.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Рисунок 1. Форменные элементы крови [1–3]

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Рисунок 2. На рисунке представлены: концентрации форменных элементов крови в норме; лейкоцитарная формула — процентное соотношение разных видов лейкоцитов в крови; скорость оседания эритроцитов; концентрация гемоглобина; гематокрит в норме [4].

Итак, специалисты анализируют относительное и абсолютное содержание клеток, их морфологические характеристики, распределение по объему крови и многие другие параметры. Эти показатели могут рассказать, способны ли клетки в полной мере выполнять свои функции, а если нет, то указать на причину их «неработоспособности» и послужить основой для постановки диагноза.

Кровь под микроскопом что можно увидеть. Смотреть фото Кровь под микроскопом что можно увидеть. Смотреть картинку Кровь под микроскопом что можно увидеть. Картинка про Кровь под микроскопом что можно увидеть. Фото Кровь под микроскопом что можно увидеть

Рисунок 3. Исследование крови: тогда и сейчас

Вперед, в прошлое!

1965 год, 8 утра, в местной поликлинике очередь на анализы. Ваша бабушка сдала кровь, и лаборант относит ряд пробирок на исследование. Проследуем за ним в лабораторию и посмотрим, что там и как. В лаборатории мы видим врачей, склонившихся над микроскопами или работающих с пробирками. Без преувеличения можно сказать, что в молодости вашей бабушки глаз специалиста и микроскоп были основными инструментами для анализа крови. Определяют следующие основные характеристики крови: концентрация каждого типа форменных элементов, количество различных видов лейкоцитов, скорость оседания эритроцитов и концентрация гемоглобина. Помимо этого, специалист рассчитывает гематокрит — отношение объема эритроцитов к общему объему крови [5].

По порядку рас-счи-тайсь!

Первым делом производится подсчет клеток и определяется их концентрация в крови. Подсчет эритроцитов, лейкоцитов и тромбоцитов проводят в камере Горяева, названной в честь своего изобретателя. Камера Горяева — стекло с углублением и нанесенной сеткой, куда помещается разведенная в физрастворе капля крови. Для определения количества форменных элементов камеру помещают под микроскоп и считают клетки, находящиеся в больших и маленьких квадратах сетки. Для каждого типа клеток существуют свои правила подсчета и формула, по которой вычисляется их исходная концентрация с учетом разведения крови и количества квадратов сетки [6]. Изменение количества форменных элементов служит важным критерием для диагностики анемии, воспалительных и вирусных заболеваний, нарушений свертывающей системы крови и других патологических состояний [7].

Ты кто такой?

Другой этап исследования крови — дифференцировка лейкоцитов на популяции. Ей уделяется особое внимание: изменение концентрации определенного типа клеток говорит о конкретной патологии. Бактериальная инфекция, вирусы или аллергия? Лейкоциты подскажут, какой поставить диагноз и какое назначить лечение. Различение лейкоцитов доверяют только высококвалифицированному специалисту. Для начала мазок крови фиксируют в спирте и окрашивают по методу Романовского—Гимзы. Состав красителя подобран таким образом, что различные структуры клеток окрашиваются в разные цвета. Окраска зависит от способности компонентов красящей смеси связываться со структурами, содержащими кислоты или основания. Например, гемоглобин и гранулы эозинофилов приобретают красно-розовую окраску за счет эозина, а ядра форменных элементов и базофильные гранулы (имеющие сродство к основаниям) окрашиваются метиленовым синим и азуром в синий цвет [1]. Когда мазок готов, специалист в микроскоп исследует его и по внешнему виду определяет, к какому типу принадлежат разные клетки [8]. Наличие окрашенных гранул, особенности формы ядра, размер клетки — все параметры нужно держать в голове для безошибочной классификации. Обычно подсчитывали сто лейкоцитов с последующим вычислением процентного содержания, а для того чтобы не запутаться, использовали 11-клавишный счетчик [9]. Увидел в микроскоп клетку — нажми на клавишу с обозначением клетки данного типа, и в конце подсчета количество лейкоцитов каждого вида отобразится на экране счетчика [10].

Выпали в осадок

Еще одна характеристика, имеющая клиническое значение — скорость оседания эритроцитов (СОЭ). Это показатель, оценивающий скорость разделения крови на плазму и форменные элементы. В чем причина такого разделения? Макромолекулы, находящиеся в плазме крови, могут связывать одновременно два эритроцита друг с другом, в результате чего образуются «монетные столбики» [11]. Такие комплексы под действием силы тяжести оседают на дно пробирки, оставляя над собой слой прозрачной плазмы — это называется седиментацией эритроцитов. Увеличение скорости оседания эритроцитов указывает на патологические процессы, происходящие в организме, такие как воспалительные, инфекционные или онкологические заболевания [12].

Для определения СОЭ мировое признание получил метод Вестергрена, однако в России также был распространен метод Панченкова. Принцип работы методов одинаков, различаются только типы используемых пробирок. Кровь смешивают с антикоагулянтом — цитратом натрия — и помещают в капилляр — тонкую стеклянную трубочку. Эритроциты оседают на дно пробирки в течение часа, а затем измеряется высота столбика плазмы, образовавшегося сверху [13]. Таким образом получают скорость оседания эритроцитов, выраженную в мм/ч.

На вкус и цвет

Гемоглобин — красный пигмент эритроцитов, связывающий и переносящий кислород и углекислый газ. Снижение содержания гемоглобина в эритроцитах — причина анемий, сопутствующих целому ряду болезней. Концентрацию гемоглобина определяют визуально с помощью гемометра Сали. Прибор выглядит так: по центру — пробирка для анализируемой крови, а по бокам — окрашенные эталонные пробирки. В изучаемую кровь лаборант добавляет соляную кислоту — гемоглобин превращается в гемин бурого цвета. Затем кровь разводят дистиллированной водой, пока ее цвет (по субъективному мнению лаборанта!) не совпадет с цветом эталона. Уровень жидкости, получившийся в центральной пробирке, соответствует концентрации гемоглобина [14].

Как вы уже догадались, 50 лет назад при исследовании крови совершить ошибку было очень просто. Неверное определение вида лейкоцита или сбой при подсчете форменных элементов — все это приводило к неточным результатам анализа. Что было сделано для предотвращения ошибок? Вернемся в наше время и узнаем, как изучают кровь сегодня.

Времена меняются

Изменения видны уже на этапе забора крови: если раньше врач собирал кровь в несколько пробирок с реагентами, стеклянный капилляр и делал на стекле мазок, то сейчас используются совсем небольшие объемы — от 12 до 150 мкл [15] крови достаточно, чтобы исследовать ее по всем параметрам.

Заглянем в современную гематологическую лабораторию. Ого! Все заставлено оборудованием, и лаборанта что-то не видно. Может, отошел приготовить себе кофе? Не успеет! Анализ крови будет готов за минуту, и прибор выдаст результат в виде бумажной ленты с числами и аббревиатурами, за которыми скрываются всевозможные параметры.

Современные гемоанализаторы подразделяются на несколько классов, в зависимости от того, что они умеют делать. Каждый последующий класс — новая ступень эволюции — быстрее, точнее, совершеннее. Использование комбинации технологий творит чудеса: если первые анализаторы могли определять восемь параметров крови и не различали виды лейкоцитов [16], то новейшие приборы способны дифференцировать до семи популяций лейкоцитов [17] и в общей сложности исследовать более 40 характеристик крови.

Как сказал Артур Кларк: «Любая достаточно развитая технология неотличима от магии». И действительно, подробнейший результат за столь короткий срок не может не удивлять. Но вся магия основана на физических законах. И хотя такие названия, как электрический импеданс, светорассеяние и фотометрия на первый взгляд немного пугают, сейчас мы разберемся, какие принципы лежат в основе каждой технологии анализа.

Перепись населения

В середине прошлого века Уоллес Культер совершил революцию, запатентовав технологию автоматического подсчета клеток. Его именем назван один из лидеров в сфере производства гематологических анализаторов — компания Beckman Coulter [18]. Апертурно-импедансный метод (или метод Культера) основан на регистрации и анализе импульсов, возникающих при прохождении клетки через апертуру из одной емкости в другую, в каждой из которых находится электрод. Когда клетки в отверстии нет, через электролит между электродами свободно протекает ток под действием электрического поля. Чтобы направить клетки к апертуре, используют насос, откачивающий жидкость из одной емкости, в нее и устремляются форменные элементы. Проходя через апертуру, клетка вытесняет из одной емкости в другую объем электролита, равный своему объему. При этом возникает импульсное изменение сопротивление (импеданса) — мембрана клеток создает препятствие для свободного протекания тока. Одновременно меняется и сила тока, которую регистрирует счетчик. Число возникших импульсов соответствует количеству форменных элементов, а высота импульса пропорциональна объему клетки [19]. Используя информацию о количестве и объеме форменных элементов, прибор может рассчитать гематокрит, среднюю концентрацию гемоглобина в эритроците, ширину распределения клеток по объему и многие другие параметры [15].

Разделяй и властвуй

Дифференцировку лейкоцитов на популяции можно провести с помощью счетчика Культера, однако возникает проблема — различные виды лейкоцитов близки по объему и схожая амплитуда импульсов не всегда позволяет точно установить тип клетки. Как быть? Для решения этой загвоздки подбирают сочетания реагентов, которые изменяют размеры клеток в разной степени так, что становится возможным их разделить [15].

Но наиболее распространенный способ дифференцировки — проточная цитофлуометрия [20]. Метод работает следующим образом: клетки, находящиеся в потоке, поочередно облучаются лазером, а возникающие при этом сигналы светорассеяния и флуоресценции регистрируются детекторами и анализируются. Для того чтобы правильно определить принадлежность к популяции, исследуют сразу несколько параметров. Так, рассеяние света под малым углом дает информацию об относительном размере клеток, а рассеяние света под прямым углом позволяет «заглянуть» внутрь клетки и изучить ее внутреннюю структуру — наличие гранул и форму ядра. Еще один параметр — флуоресценция — способен рассказать о количестве антигенов и их виде на поверхности клеток — такое точно не определить на глаз. В отличие от ручных методов дифференцировки, анализируются не 100–200 клеток, а десятки тысяч в секунду! И к каждому лейкоциту индивидуальный подход: гидродинамическая фокусировка способствует тому, чтобы клетки выстраивались в ряд и облучались в проточной ячейке поодиночке. Результат подсчета появляется на экране в виде диаграмм рассеивания, где клетки со схожими свойствами формируют кластеры.

Выпали в осадок: 2.0

Современные приборы умеют измерять СОЭ двумя принципиально различными способами. Первый — модифицированный метод Вестергрена. Принцип работы не изменился со времен вашей бабушки, но за счет автоматизации стал более быстрым и точным. Второй — измерение кинетики агрегации эритроцитов оптическим методом [21]. Происходит это так: в кровь добавляется антикоагулянт, пробирки с кровью помещаются в ротор, где происходит автоматическое перемешивание. После этого анализатор отбирает часть крови в микрокапилляр, где она ускоряется и резко останавливается (так называемый метод «остановленной струи»). Остановка вызывает агрегацию эритроцитов, и в этот момент с помощью фотометра определяется оптическая плотность крови — чем плотнее будут расположены эритроциты, тем меньше света пройдет через пробу. Прибор использует полученные данные и строит кривую седиментации — ее анализ позволит представить результат в привычных единицах измерения СОЭ [22], [23].

Фото на память

Для определения концентрации гемоглобина Международный комитет по стандартизации в гематологии рекомендует метгемоглобин-цианидный метод. Однако сейчас повсеместно применяется иное исследование, не использующее токсичный цианид. Знакомьтесь, SLS-метод. Назван он по основному реагенту — лауритилсульфату натрия. SLS разрушает мембраны эритроцитов, после чего связывается с группами гема и образует стабильные комплексные соединения. Они анализируется фотометрически — через пробу крови пропускают свет лазера. Комплексные соединения поглощают часть света, в результате этого интенсивность выходящего светового потока ослабевает. Затухание измеряют с помощью фотодатчика и полученные данные преобразуют в единицы концентрации гемоглобина [24].

Это не предел

Итак, в процессе нашего экскурса мы посмотрели, как осуществлялся анализ крови во времена наших бабушек и как это делается сегодня. Выяснили, что в настоящее время благодаря переходу на автоматические методы существенно повысилась скорость получения результатов, а главное, их точность! Следует отметить, что современная аппаратная диагностика позволяет решить значительно больше задач, чем это было возможно пару поколений назад, но и это — тоже не предел!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *