Кубиты что это такое

Как устроен и зачем нужен квантовый компьютер

Это прорыв в технологиях или очередной биткоин?

Сейчас много говорят о новых технологиях вычисления — в частности, то и дело звучат слова «квантовые вычисления», «квантовый интернет» и даже «квантовая криптография». Посмотрим, что это такое и нужно ли оно нам. Начнём с квантового компьютера.

Биты и кубиты

В обычном компьютере все вычисления основаны на понятии «бит». Это такой элемент, который может принимать значения 0 или 1. Физически это реализовано так:

Транзистор в компьютере может принимать значение 1 или 0, то есть «включён» или «выключен». С точки зрения компьютерной логики, этот транзистор называется битом. Это минимальная единица информации в компьютере. Физически бит может быть в процессоре, на чипе памяти, на магнитном диске, но суть одна: это какое-то физическое пространство, которое определённо либо включено, либо выключено.

Ключевое слово здесь — «определённо». Программист и инженер может точно узнать, в каком состоянии находится тот или иной бит. Заряд в нём либо есть, либо нет, никаких промежуточных состояний там не существует.

В квантовом компьютере вместо битов — кубиты. Кубиты — это квантовые частицы, у которых есть интересная особенность: кроме стандартных 0 и 1 кубит может находиться между нулём и единицей — это называют суперпозицией. Нагляднее это видно на рисунке:

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такоеКубит может принимать все значения, которые видны на цветной сфере

Все решения уже известны

Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита. Звучит странно, но это особенность квантовых частиц.

Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы.

Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такоеРабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию

Как делают кубиты и в чём сложность

Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью.

Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система.

Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира.

Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный.

С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такоеКвантовый процессор на девяти кубитах от Google

Зачем нужны квантовые компьютеры

Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30–40 знаков (или больше) на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд.

Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно. Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут.

Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи.

Источник

Кубиты что это такое

Свежий номер уже доступен

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Спасибо!

Все что вы хотели знать о кубитах, но боялись спросить

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Квантовые вычисления — непростая тема. С просьбой объяснить, что это такое, мы обратились к ученому, который создает квантовые процессоры. Завлабораторией сверхпроводящих метаматериалов МИСиСа, руководитель группы «Сверхпроводящие квантовые цепи» в Российском квантовом центре, профессор Алексей Устинов помог разобраться в том, какова материальная основа единицы квантовой информации — кубита — и как действуют процессоры на базе сверхпроводников.

СЛОВАРЬ

Кубит — квантовый разряд, наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два состояния — 0 и 1, но при этом может находиться в суперпозиции — может принимать одновременно оба значения.

Фотон — фундаментальная частица, квант электромагнитного поля. В виде фотонов испускается и поглощается электромагнитное излучение. Фотон имеет свойства как частицы, так и волны. У него нет ни электрического заряда, ни массы.

Физически кубит на базе сверхпроводников представляет собой пластинку из кремния, на которую нанесены две тонкие, меньше микрона, пленки алюминия. Между ними — диэлектрик из окиси алюминия. В этом месте находится джозефсоновский переход, или контакт, в котором происходит эффект Джозефсона: протекание сверхпроводящего тока через слой диэлектрика, разделяющий два сверхпроводника. Для удобства пластинка из кремния закрепляется на медной подложке.

Почему алюминий

Он становится сверхпроводником при температуре 1,2 К. В сверхпроводнике электрический ток течет без сопротивления — оно равно нулю.

Сверхпроводник по своим физическим свойствам становится системой, минимальная энергия которой хорошо определена, а следующее возможное значение энергии кольца с джозефсоновским переходом отделяется небольшой щелью. Такая система фактически имеет два уровня энергии. Это и есть материальная основа кубита — квантовая система с двумя уровнями энергии, которая нужна для того, чтобы делать вычисления.

Сколько живет кубит

Чтобы проводить вычисления, необходимо управлять переходами с минимального уровня энергии на следующий и удерживать систему на этом уровне как можно дольше.

В отличие от обычных компьютеров, для сверхпроводниковых кубитов потеря кванта энергии — это потеря информации, то есть конец жизни кубита как единицы информации. Квантовая система теряет энергию легко: она улетучивается в пространство в виде фотонов или переходит в тепло — сверхпроводник нагревается, а энергия теряется.

Удержать кубит в возбужденном состоянии — большая технологическая и пока до конца не решенная проблема. В первых экспериментах в Японии в 1999 году кубит жил (удерживал энергию на верхнем уровне) лишь наносекунду. Благодаря исследованиям физиков всего мира за последние годы произошел экспоненциальный рост срока жизни кубитов. Сейчас они живут несколько десятков, иногда даже сотен микросекунд. Рост стал возможен благодаря тому, что ученые тщательно изолируют кубиты от окружения и воздействия неблагоприятных факторов.

Минимальный набор для квантового вычисления — пара кубитов, которая управляется двухкубитными вентилями. Вентили — логические операции по обработке информации («и», «или», «нет» и т. д.), они есть и в обычных компьютерах. Благодаря объединению фотон (читай — энергия и информация) не теряется, а передается от одного кубита к другому.

Переход с минимально возможного уровня энергии на следующий инициируется за счет воздействия на кубит коротким импульсом микроволн с частотой в несколько гигагерцев, что соответствует длине волны в несколько сантиметров. У таких волн энергия фотонов низкая (энергия излучения, напомним, обратно пропорциональна длине волны). Но температурные флуктуации (отклонение от среднего значения случайной величины) могут легко разрушить квантовую систему. Чтобы это не произошло, температура системы должна быть еще ниже, чем это необходимо для того, чтобы сделать алюминий сверхпроводником. Вместо 1 К требуется порядка 20 мК.

Создают и поддерживают такую температуру специальные холодильники, работающие на смеси изотопов гелия. В нашей стране такие есть во ВНИИА, МГТУ, МФТИ, МИСиСе и Российском квантовом центре.

Как избавиться от ошибок

Чтобы кубиты могли взаимодействовать, необходимо объединить их в цепи, по аналогии с транзисторами. Когда кубиты соединены в схему, работающую по алгоритму, в ней можно запустить сложное вычисление.

Создание цепей — задача не только математическая (надо написать алгоритм), но и аппаратная. Нужна электроника, которая может управлять взаимодействием множества кубитов. Для иллюстрации физики приводят такой пример: представьте, что у вас два капризных ребенка. Сложно ими управлять? Сложно, но возможно. А теперь представьте, что у вас их 50. Физикам, как и родителям, нужны все более сложные средства управления квантовыми «капризными детьми».

Помимо самого выполнения вычислений нужно, чтобы итог этих вычислений был корректным. В России безошибочность выполнения однокубитных операций (контролируемых изменений состояний кубитов) — 99,9 %, двухкубитных — 89 %, а точность считывания — 85–90 %. У Google, в лаборатории Джона Мартиниса в Университете Санта-Барбары, у однокубитных операций показатель тот же, у двухкубитных — 99,5 %. По точности считывания лидер с показателем 99 % — лаборатория IBM в Цюрихе.

Для обычных компьютеров задача избавления от ошибок уже решена, для квантовых решение только предстоит найти. Один из вариантов — создать логический кубит. «С помощью некоторых ухищрений (предлагаю не вдаваться в подробности) можно соединить несколько физических кубитов. Объединенные в систему физические кубиты теоретически могут жить бесконечно долго, потому что физические кубиты «умирают» (теряют информацию) в разное время. Здесь используется принцип двух наблюдателей: когда два наблюдателя смотрят на кубит, они одновременно заметят, что ошибка возникла. Как только возникает совпадение этих двух событий, мы говорим: да, произошла ошибка», — ​поясняет Алексей Устинов. Правда, пока ни одна из команд, работающих над квантовыми процессорами на сверхпроводниках, к решению этой задачи на практике не приблизилась.

Источник

Что такое кубит?

Кубит — базовая единица информации в области квантовых вычислений

Объяснение понятия кубита

Точно так же, как двоичный бит — это базовая единица информации в классических (или традиционных) вычислениях, кубит (или квантовый бит) — это основная единица информации в квантовых вычислениях. Квантовые вычисления обеспечивают инновации в отраслях здравоохранения, энергетики, интеллектуальных материалов и систем защиты окружающей среды, а также в других сферах.

Сравнение кубитов и битов

Кубиты представлены суперпозицией множества возможных состояний

Для достижения линейного сочетания двух состояний кубит использует явление квантовой механики, называемое суперпозицией. Классический двоичный бит может представлять только одно двоичное значение, например 0 или 1. Это означает, что бит может находиться только в одном из двух возможных состояний. Кубит же может представлять 0, 1 или любую долю от 0 до 1 в суперпозиции обоих состояний с определенной вероятностью того, что он равен 0, и определенной вероятностью того, что он равен 1.

Суперпозиция обеспечивает квантовым компьютерам сверхмощные вычислительные возможности

Суперпозиция позволяет квантовым алгоритмам обрабатывать информацию за малую часть того времени, которое потребовалось бы самым быстрым классическим системам для решения определенных проблем.

Есть множество физических реализаций кубитов

Классические компьютеры используют привычные микросхемы на основе полупроводников. Кубиты же (иногда называемые кубитами квантового компьютера) можно создать из перехваченных ионов, фотонов, искусственных или реальных атомов либо квазичастиц. В зависимости от архитектуры системы кубитов для некоторых реализаций для кубитов необходимо поддерживать температуры, близкие к абсолютному нулю.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Суперпозиция, интерференция и запутанность

Суперпозиция позволяет квантовым алгоритмам использовать другие явления квантовой механики, такие как интерференция и запутанность. Суперпозиция в сочетании с интерференцией и запутанностью обеспечивает мощные вычислительные возможности, которые позволяют решать проблемы в разы быстрее, чем с помощью классических компьютеров.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Интерференция

Интерференция — это следствие суперпозиции. Между состояниями кубитов может возникать интерференция, так как каждое состояние описывается амплитудой вероятности, аналогично амплитуде волн.

Конструктивная интерференция увеличивает амплитуду, а деструктивная — устраняет ее. Эти эффекты используются в алгоритмах квантовых вычислений и обуславливают их кардинальное отличие от классических алгоритмов. Интерференция в сочетании с запутанностью позволяет реализовать квантовое ускорение, обеспечиваемое квантовыми вычислениями.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Запутанность

Между несколькими кубитами может возникнуть квантовая запутанность. Запутанные кубиты всегда взаимокоррелируют, образуя единую систему. Даже если они бесконечно далеко друг от друга, определив состояние одного кубита, мы сможем узнать состояние другого, не измеряя его напрямую.

Запутанность необходима для любого квантового вычисления. На классическом компьютере ее невозможно эффективно реализовать. Запутанность применяется при разложении больших чисел на простые множители (алгоритм Шора) и решении задач поиска (алгоритм Гровера).

Будущее кубитов

По мере развития квантовых технологий мы продвигаемся все ближе к решению некоторых самых сложных проблем мира. Но, хотя эта новая парадигма и обладает невероятным потенциалом, отрасль квантовых вычислений еще очень далека от зрелости.

Хрупкость кубитов

Одна из самых серьезных проблем в области квантовых вычислений — хрупкость кубитов. Запутанность системы кубитов с ее средой, включая настройку измерений, может нарушить согласованность системы и привести к декогеренции. Поэтому сейчас разрабатываются усовершенствования в процессах создания оборудования для квантовых вычислений и методах исправления ошибок.

Топологические кубиты более стабильны

Чтобы устранить проблемы, связанные с хрупкостью кубитов, Майкрософт использует топологические кубиты, которые стабилизируются за счет манипулирования их структурой и окружения их химическими соединениями, защищающих кубиты от внешнего «загрязнения». Топологические кубиты защищены от шума благодаря топологическим свойствам квазичастиц, что повышает устойчивость квантового оборудования Майкрософт к ошибкам. Эта повышенная стабильность позволяет квантовому компьютеру масштабироваться, чтобы выполнять более длительные и сложные вычисления, а также упростить реализацию более комплексных решений.

Ресурсы Azure Quantum

Создавайте квантовые решения уже сегодня, став одним из ранних пользователей предварительной версии Azure Quantum — полнофункциональной открытой облачной экосистемы. Получите доступ к программному обеспечению, оборудованию и готовым решениям и приступайте к разработке на надежной, масштабируемой и высокобезопасной платформе.

Источник

Что такое квантовый компьютер? Разбор

Интересно, а какая сторона у монетки в тот момент, когда она в воздухе? Орел или решка, горит или не горит, открытое или закрытое, 1 или 0. Все это примеры двоичной системы, то есть системы, которая имеет всего два возможных состояния. Все современные процессоры в своем фундаменте основаны именно на этом!

При правильной организации транзисторов и логических схем можно сделать практически все! Или все-таки нет?

Современные процессоры это произведение технологического искусства, за которым стоят многие десятки, а то и сотни лет фундаментальных исследований. И это одни из самых высокотехнологичных устройств в истории человечества! Мы о них уже не раз рассказывали, вспомните хотя бы процесс их создания!

Процессоры постоянно развиваются, мощности растут, количество данных увеличивается, современные дата-центры ворочают данные сотнями петабайт (10 в 15 степени = 1 000 000 000 000 000 байт). Но что если я скажу что на самом деле все наши компьютеры совсем не всесильны!

Например, если мы говорим о BigData (больших данных) то обычным компьютерам могут потребоваться года, а то и тысячи лет для того, чтобы обработать данные, рассчитать нужный вариант и выдать результат.

И тут на сцену выходят квантовые компьютеры. Но что такое квантовые компьютеры на самом деле? Чем они отличаются от обычных? Действительно ли они такие мощные? Будет ли на них CS:GO идти в 100 тысяч ФПС?

Небольшая затравочка — мы вам расскажем, как любой из вас может уже сегодня попробовать воспользоваться квантовым компьютером!

Устраивайтесь поудобнее, наливайте чай, будет интересно.

Глава 1. Чем плохи обычные компьютеры?

Начнем с очень простого классического примера.

Представим, что у вас есть самый мощный суперкомпьютер в мире. Это компьютер Фугаку. Его производительность составляет 415 ПетаФлопс.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Давайте дадим ему следующую задачку: надо распределить три человека в две машины такси. Сколько у нас есть вариантов? Нетрудно понять что таких вариантов 8, то есть это 2*2*2 или 2 в третьей степени.

Как быстро наш суперкомпьютер справится с этой задачей? Мгновенно! Задачка-то элементарная.

А теперь давайте возьмем 25 человек и рассадим их по двум шикарным лимузинам, получим 2 в 25 степени или 33 554 432 варианта. Поверьте, это число тоже плевое дело для нашего суперкомпьютера.

А теперь 100 человек и 2 автобуса, сколько вариантов?

Считаем: 2 в 100 степени — это примерно 1.27 x 1030 или 1,267,650,600,228,229,401,496,703,205,376 вариантов.

Теперь нашему суперкомпьютеру на перебор всех вариантов понадобится примерно 4.6*10^+35 (4.6 на 10 в 35 степени) лет. А это уже очень и очень много. Такой расчет займет больше времени чем суммарная жизнь сотен вселенных.

Суммарная жизнь нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени.

Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда!

И что же? Все? Выхода нет?

Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды!

И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам!

Глава 2. Сравнение. Биты и Кубиты

Давайте разберемся, в чем же принципиальная разница.

Мы знаем, что классический процессор состоит из транзисторов и они могут пропускать или не пропускать ток, то есть быть в состоянии 1 или 0 — это и есть БИТ информации. Кстати, рекомендую посмотреть наше видео о том как работают процессоры.

Вернемся к нашему примеру с двумя такси и тремя людьми. Каждый человек может быть либо в одной, либо в другой машине — 1 или 0.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое
Для решения процессору надо пройти через абсолютно все варианты один за одним и выбрать те, которые подходят под заданные условия.

В квантовых компьютерах используются тоже биты, только квантовые и они принципиально отличаются от обычных транзисторов.

Они так и называются Quantum Bits, или Кубиты.

Что же такое кубиты?

Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находиться одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0.

Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка….

В нашем случае они одновременно 1 и 0!

Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось.

Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики!

Квантовый компьютер внутри

Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество.

И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать.

И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной!

Принцип работы квантового компьютера

Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера:

Для решения подобной системы нам понадобится компьютер с 3 кубитами.

Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно!

Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!

Но что же получается? Он выдает все варианты сразу, а как получить правильный?

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно:

1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров!

Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.

У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Квантовые компьютеры сегодня

Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера? А то их пока как-то не наблюдается на полках магазинов!

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Их разработкой занимаются GOOGLE, IBM, INTEL, MICROSOFT и другие компании поменьше. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое
Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google. Октябрь 2019

В октябре прошлого года, в журнале Nature, Google выложила статью, которая шарахнула по всему миру огромными заголовками — КВАНТОВОЕ ПРЕВОСХОДСТВО!

В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет!

Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2.5 дня, но факт остается фактом — квантовое превосходство было достигнуто в определенной степени!

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами!

Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений.

Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам. Вы можете изучать, разрабатывать и запускать программы с помощью IBM Quantum Experience.

Но зачем вообще нужны квантовые компьютеры и где они будут применяться?

Естественно, не для распихивания людей по автобусам.

Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой. Shazam, прокладывание маршрутов, нейронные сети, искусственный интеллект — все это получит невероятный толчок! Кроме того симуляции и моделирование квантовых систем! Зачем это надо — спросите вы?

Это очень важно, так как появится возможность строить модели взаимодействия сложных белковых соединений.

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Это станет очень важным шагом для медицины, открывающим просто умопомрачительные просторы для создания будущих лекарств, понимания того как на нас влияют разные вирусы и так далее. Простор огромен!

Чтобы вы примерно понимали какая это сложная задачка, мы вернемся в примеру с монеткой. Представьте что вам надо заранее смоделировать что выпадет — орел или решка.

Надо учесть силу броска, плотность воздуха, температуру и кучу других факторов. Сложно? Ну не так уж!

А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех! Вот примерно настолько сложная эта модель о взаимодействии белков.

Кроме того, вы наверняка слышали о том, что квантовые компьютеры сделают наши пароли просто пшиком, который можно будет подобрать за секунды. Но это уже совсем другая тема…

Вывод

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

Какой вывод из всего этого мы можем сделать, квантовый компьютер — это принципиально новая система. Она отличается от обычных компьютеров в самом фундаменте, в физических основах на которых работает.

Их на самом деле даже нельзя сравнивать! Это все равно, что сравнивать обычные счеты и современные компьютеры!

Кубиты что это такое. Смотреть фото Кубиты что это такое. Смотреть картинку Кубиты что это такое. Картинка про Кубиты что это такое. Фото Кубиты что это такое

И конечно есть большие сомнения, что вы когда-нибудь сможете прийти в магазин и купить свой маленький квантовый процессор. Но они вам и не нужны. Квантовые компьютеры для обычного пользователя станут как современные дата-центры, то есть нашими невидимыми помощниками, которые расположены далеко и которые просто делают нашу жизнь лучше или как минимум другой!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *