Куст в нефтянке что

Кустовое бурение

Под кустовым бурением понимается способ, при котором устья скважин группируются на общей площадке

Под кустовым бурением понимается способ, при котором устья скважин группируются на общей площадке, а конечные забои находятся в точках, соответствующих проектам разработки месторождения.

Преимущества кустового бурения скважин:

Впервые в СССР кустовое бурение было осуществлено под руководством Н. Тимофеева на о-ве Артема в Азербайджане.

К недостаткам кустового наклонно направленного способа бурения следует отнести вынужденную консервацию пробуренных скважин до окончания некоторой скважины данного куста в целях противопожарной безопасности, увеличение опасности пересечения стволов скважин, трудности в проведении капитального и подземного ремонтов скважин, а также в ликвидации грифонов в условиях морского бурения.

Горизонтальное и разветвленное горизонтальное бурение применяются для увеличения нефте- и газоотдачи продуктивных горизонтов при первичном освоении месторождений с плохими коллекторами и при восстановлении малодебитного и бездействующего фонда скважин.

При этом протяженность завершающего участка скважины, расположенного в продуктивном пласте (горизонтального участка), может превышать 1000м.

Условия, вызывающие необходимость применения кустового бурения, подразделяются на:

К разновидностям кустового бурения можно отнести 2-ствольное последовательное, 2-ствольное параллельное и 3-ствольное бурение.

В настоящее время кусты скважин становятся крупными промышленными центрами с базами МТС, вспомогательными цехами и т. д.

В целом кустовой способ бурения сокращает затраты на обустройство промысла, упрощает автоматизацию процессов добычи и обслуживания, а также способствует охране окружающей среды при освоении нефтяных и газовых месторождений.

В этом случае можно полнее осуществлять сбор всех продуктов отхода бурения и уменьшать вероятность понижения уровня грунтовых вод на огромных территориях, которое может возникнуть вследствие нарушения целостности водоносных горизонтов.

Источник

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 2

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Сегодня мы расскажем о том, как буровые станки бороздят просторы Сибири, из чего состоит скважина; зачем, для того, чтобы добыть что-нибудь нужное, надо сначала закачать в пласт что-нибудь ненужное; и из чего, собственно, сделана нефтяная залежь. Это вторая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.

Первую часть серии можно прочесть здесь

Конструкция скважины

Скважина – это отверстие в земле, в земной коре (в почве, потом в глине, потом во всяких разных породах – все видели слоистость земли на стенке любого строительного котлована), пробуренное до глубины залегания месторождения с целью выкачивания из месторождения чего-нибудь нужного (нефти или газа) или закачивания в месторождение чего-нибудь ненужного (воды или углекислого газа). Места, где нефть можно просто черпать с поверхности земли или поднимать воротом из неглубоких колодцев, почти закончились: теперь до нефти нужно сначала добуриться.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Скважину бурят буровой установкой, которая насаживает на трубу специальное буровое долото с вращающимися резцами. В зависимости от способа, может вращаться сама труба вместе с резцами, или труба может не вращаться, но в буровой инструмент подаётся по той же трубе (бурильной колонне) электричество или буровой раствор под давлением. В последнем случае буровой раствор и приводит в движение долото, и он же обратным потоком жидкости выносит на поверхность всё, что там резец набурит. Не знаю, как вы, а я был в своё время восхищён такой инженерной идеей. Там ещё и телеметрия передаётся обратно звуковыми волнами тоже по потоку жидкости.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

В процессе бурения можно увеличивать или уменьшать вертикальную нагрузку на долото (то есть, давить вниз) для изменения скорости проходки, а также потихоньку отклонять буровую колонну для того, чтобы направлять скважину в ту или иную сторону. По понятным причинам для бурения нескольких скважин удобнее всего начинать бурение в одном и том же месте, называемом кустом скважин: удобно подвозить к одному месту руду, дерево, ртуть, серу, кристаллы, золото материалы, бригады, оборудование, подводить электричество, а после запуска всех скважин в работу – собирать нефть. Делать это с десятка скважин на одном кусту очевидно удобнее, чем с десятка скважин, рассредоточенных на необъятных просторах торфяных болот Сибири. Поэтому начинают бурить все скважины куста с одной площадки, и постепенно разводят их по траекториям в разные стороны, чтобы на поверхности все траектории скважин куста сходились в одном месте, но внизу равномерно распределялись по какому-то заданному участку месторождения. Это означает, что чаще всего у набора скважин с одного куста есть несколько типовых участков траектории: начальный участок продолжается участком, где скважины разводятся по разным азимутам. Если кто забыл, азимут – это направление, на которое стрелка компаса указывает, точнее – отклонение от этой стрелки. Потом идёт участок набора глубины, потом участок хитрого входа в нефтесодержащий пласт, ну и собственно, участок скважины внутри нефтесодержащего пласта, где в скважину через её стенки поступает нефть.

Чаще всего месторождение “в длину” и “в ширину”, то есть по латерали, гораздо больше, чем “в высоту”, то есть по вертикали. По латерали месторождение может простираться на километры, десятки и сотни километров, а по вертикали – на метры, десятки и сотни метров. Также очевидно, что чем более длинная часть скважины находится внутри месторождения, тем больше нефти будет к такой скважине притекать. Поэтому сейчас большая часть буримых скважин – горизонтальные. Это не значит, что вся скважина горизонтальная – нет, наверху всё такой же “паук” с лапками вниз и в разные стороны. Условно вертикальная скважина “протыкает” месторождение вертикально, а условно горизонтальная скважина имеет довольно длинный (сотни метров) вскрывающий месторождение горизонтальный участок.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

После бурения скважину отдают в освоение. Дело в том, что при бурении скважина и прилегающая к ней часть пласта оказывается забита всяким мусором и шламом: мелкими и крупными частицами породы, утяжелителями бурового раствора и так далее. Задача освоения – очистить скважину, очистить место соединения скважины с пластом, очистить прилегающую часть пласта (призабойную зону) так, чтобы то, что мы хотим добывать или закачивать, не испытывало затруднений на своём пути. После освоения скважина готова к добыче: спускай длинную насосно-компрессорную трубу (НКТ), на которой находится насос, открывай задвижку на самой скважине, включай насос и готовь ёмкости или трубопровод.

Гидравлический разрыв пласта (ГРП)

Правда, даже если вы сделаете всё в точности как описано выше, ёмкость вам понадобится маленькая, а трубопровод тоненький. Всё потому, что большинство месторождений, находящихся в разработке сейчас, являются настолько плохими (низкопроницаемыми), что бурение обычных вертикальных или даже горизонтальных скважин становится экономически неэффективным. Причём хорошо, если просто экономически неэффективным – в конце концов, всегда можно напечатать долларов и раздать бедным сланцевым компаниям – а вот если энергетически неэффективным (когда в добываемой нефти энергии меньше, чем требуется потратить на бурение и добычу), то совсем пиши пропало. На помощь пришла технология гидравлического разрыва пласта.

Суть гидроразрыва пласта (ГРП) заключается в следующем. В скважину под большим давлением (до 650 атм. или даже 1000 атм.) закачивают специальную жидкость, похожую на желе (собственно, это и есть желе). Это давление разрывает пласт, раздвигая слои породы. Но на той глубине, где обычно производится ГРП, порода сильнее сдавлена сверху, чем с боков, поэтому давлению проще раздвинуть её в стороны, чем вверх. Трещина получается почти плоская и вертикальная, при этом ширина её составляет считанные миллиметры, высота – десятки метров, а длина может доходить до нескольких сотен метров. Затем вместе с жидкостью начинает подаваться пропант – похожая на песок смесь крепких керамических гранул диаметром от долей миллиметров до миллиметров. Цель ГРП – закачать побольше пропанта в пласт так, чтобы образовалась очень хорошо проницаемая область, соединённая со скважиной. Жидкость, конечно, утечёт в пласт, а пропант останется там, куда успел дойти и не даст трещине полностью сомкнуться, обеспечивая высокопроводящий канал. Если до ГРП нефть в скважину притекала только со стенки самой скважины, то после ГРП нефть притекает со всей (ну может и не со всей, а может только с половины, точно никто не скажет) поверхности трещины. То есть площадь с которой притекает нефть, после ГРП увеличивается где-то в 1000 раз. А значит растёт (пусть и не в 1000 раз) и дебит скважины, что в конечном итоге позволяет разрабатывать месторождения, которые ранее считались нерентабельными.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Современные технологии дошли до того, что позволяют сделать на скважине не одну трещину ГРП, а целый набор, называемый стадиями (чемпионские скважины сейчас имеют длину горизонтального участка до 2000 м. и до 30-40 трещин ГРП).

Физико-химические свойства нефтесодержащей породы

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Важно понимать, что и пористость, и все остальные описываемые далее параметры, не являются на самом деле одним числом, которое справедливо для всего месторождения. Это показатели, которые зависят от самой породы и пропитывающих её флюидов, и, конечно же, меняются от точки к точке, потому что само месторождение практически всегда неоднородно (пусть и масштаб этой неоднородности может быть очень разным). Там, где в пределах месторождения залегают глины, пористость будет мала, где залегают песчаники – там пористость будет велика, и так далее. Кстати, мы всё равно не сможем описать каждый кубический сантиметр породы, поэтому от реальности при моделировании нам придётся отступить, и считать, что на каком-то масштабе (например, в ячейках размером 10 метров на 10 метров на 1 метр) свойства породы и всего остального не меняются.

Второй важный показатель – проницаемость породы. Она показывает способность породы пропускать сквозь себя флюид. Флюид, кстати, – это то, что может течь, жидкость или газ. Когда пустот в породе мало, порода не пропускает сквозь себя флюид. Мысленно представим, что пустот в породе становится всё больше и больше: начиная с определённого момента отдельные пустоты начинают соединяться друг с другом и происходит перколяция – возникают каналы, по которым флюид может начинать двигаться. В быту мы часто сталкиваемся с пористыми материалами с высокой и низкой проницаемостью: губку для посуды легко “продуть” насквозь, хлеб уже больше сопротивляется попыткам продуть сквозь него воздух, а продуть насквозь пробку не легче, чем надуть резиновую грелку. Измеряется она в единицах дарси, но чаще в ходу миллидарси мД и нанодарси нД.

Во всех этих случаях можно заметить следующие закономерности. Через одни материалы (с высокой проницаемостью) всё фильтруется легче, чем через другие – и жидкости, и газы. Кроме этого, газы вообще фильтруются легче, чем жидкости. Да и среди жидкостей всё не так однозначно – любой может заметить в домашних условиях, что жидкий гелий (у любой рачительной хозяйки в холодильнике всегда есть) фильтруется гораздо легче, чем вода… а вода фильтруется гораздо легче, чем, например, кисель. Это происходит потому, что на скорость фильтрации влияет не только проницаемость (через что фильтруется), но и вязкость (что фильтруется).

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Нефтяники всё время говорят про фильтрацию, используя именно это слово, но нужно привыкнуть к его особенному значению. Кофе фильтруется через бумажную салфетку, оставляя на ней частицы зёрен, но нефть, газ и флюиды фильтруются через породу немного в другом смысле. Слово “фильтруется” в нефтянке надо понимать просто как “течёт сквозь”.

Во всех приведённых примерах чтобы что-то начинало продуваться, мы начинали дуть, то есть прикладывать разность давлений. Если взять сантехническую трубу, набить её пористой средой и приложить к одному концу трубы повышенное давление газа или жидкости (с другой стороны будет обычное, атмосферное), то закон Дарси утверждает, что скорость фильтрации (дебит, то есть расход продуваемого флюида в секунду) будет пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости и длине трубы. Если в два раза увеличить длину трубы, для сохранения такой же скорости потока нужно в два раза увеличить перепад давления, а если в два раза увеличить вязкость продуваемого газа или жидкости, то для сохранения скорости продува нужно в два раза увеличить проницаемость продуваемой среды.

Как связана пористость и проницаемость?

Во-первых, для реальных материалов, в том числе для горных нефтенасыщенных пород, они действительно друг с другом чаще всего коррелируют. Во-вторых, правильнее говорить, что пористость является причиной для проницаемости. Очевидно, что если пористость равна нулю, то и проницаемость тоже равна нулю. Но вот все остальные зависимости – скорее статистические. Да, действительно, чаще всего, чем больше пористость, тем больше и проницаемость, и вообще, чаще всего пористость и проницаемость связаны экспоненциальной статистической зависимостью (обратите внимание, что на картинке одна ось – логарифмическая). Однако техногенные вещества могут эту зависимость нарушать: так аэрогель имеет высокую пористость (90-99%), но очень низкую проницаемость (я думаю, меньше 1 нД).

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

На что влияет проницаемость? На скорость добычи, конечно. Насос, спущенный в скважину очень быстро “выбирает” нефть вокруг себя и снижает давление в призабойной (прилегающей к нижней части скважины) зоне, а дальше в игру вступает проницаемость. Если она достаточно высока, то перепад давления, созданный насосом, вызывает фильтрацию пластовой жидкости из дальней зоны, а если проницаемость мала, то сколько ни снижай насосом давление в призабойной зоне (а у давления нет верхнего предела, но очень даже есть нижний – создать давление ниже нуля атмосфер ещё никому не удавалось!), существенный приток не вызовешь. Гипотетически, если выкопать скважину глубиной два километра в породе с нулевой проницаемостью (говорю же – гипотетически), то скважину можно полностью осушить, и на дне её будет то же самое атмосферное давление (ну ладно, чуть больше), но ничего никуда течь не будет.

В итоге, в так (неправильно) называемых “сланцевых” месторождениях нетрадиционной нефти с их крайне низкой проницаемостью бурить обычные скважины бесполезно: нефть есть, её много, но из-за низкой проницаемости скорость фильтрации такая низкая, что скважины дают мизер, не окупающий даже их эксплуатацию. Что делать? Увеличивать площадь скважины, но не увеличивая её диаметр (обрушится!), а создавая в пласте соединённую со скважиной открытую трещину ГРП, пусть и тонкую, но с большой площадью стенок. И даже это позволяет добывать нефть только с того объёма, который хоть как-то трещинами был затронут, а с соседнего кубокилометра так ничего и не притечёт.

Итак, пористость определяет теоретический доступный к добыче объём месторождения, а проницаемость определяет скорость фильтрации нефти к скважине. Третий важный параметр, описывающий свойства нефтесодержащей породы – это насыщенность, в частности, нефтенасыщенность. Пористость описывает объем “пустоты” в породе, которую может занимать любой подвижный агент – хоть жидкость, хоть газ. Но таких кандидатов в месторождении несколько: это может быть действительно газ, в условиях месторождения это чаще всего природные газообразные углеводороды (метан, этан, пропан и так далее), или какой-нибудь техногенный углекислый газ, если его уже успели закачать. И это может быть, собственно, нефть и вода. Откуда там возьмётся вода? Правильный вопрос на самом деле – откуда там взялась нефть, потому что вода там была с самого начала: напоминаю, когда-то всё это было дном океана. Это нефть в ловушку месторождения пришла и вытеснила воду, но вытеснила не всю воду, что там изначально была. В итоге когда мы начинаем разрабатывать месторождение, часть порового объёма в любой точке может быть занята нефтью, часть газом, а часть водой.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Доля порового объёма, занимаемая нефтью – это и есть нефтенасыщенность. Особенность этого показателя в том, что он может меняться в процессе разработки месторождения. Когда через нагнетательные скважины начинают закачивать воду, нефтенасыщенность в разных точках месторождения начинает меняться.

Кроме нефтенасыщенности есть ещё и газонасыщенность – доля свободного газа в поровом объёме (какое-то количество газа, кроме этого, ещё и растворено в нефти – оно учитывается в другом месте). В каких-то месторождениях есть свободный газ (он скапливается в верхней части месторождения в виде так называемой газовой шапки), в каких-то нет. Какая-то часть порового объёма, кроме этого, обязательно занята водой – доля этого объёма называется водонасыщенностью. В любом случае, сумма нефте-, газо- и водонасыщенности всегда равна единице, потому что – а чем ещё может быть занят поровый объём между крупинками породы?

Следующим важным физическим параметром, влияющим на добычу нефти, является так называемое пластовое давление – давление флюида между частичками породы в каждой точке месторождения. Сами частички ещё испытывают на себе геостатическое давление “скелета” всей породы, что ещё лежит сверху, но это уже совсем другая история.
Нефтяники любят высокое давление и не любят низкое давление, потому что давление – это накопленная энергия, которой можно воспользоваться. Иногда нефть находится в месторождении под таким высоким давлением, что её, по сути, и качать не надо – достаточно добуриться скважиной до месторождения, и пластовое давление начнёт самостоятельно выталкивать нефть на поверхность: скважина даст фонтан нефти – только и успевай подставлять вёдра и тазики, нефть хлещет сама, без каких-либо затрат электричества на добычу!

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Давление тесно связано с таким показателем, как сжимаемость. Мысленно представим себе колбу, наполненную, например, газом. Пусть давление там равно атмосферному. Затолкаем туда ещё 1% объёма газа и посмотрим, как изменилось давление. Если у вас нет под руками манометра, придётся поверить на слово – изменится не очень сильно (вы удивитесь — но на на тот же 1%). Возьмите пустую бутылку 0.7 (можно взять полную и предварительно её опустошить, но тогда дальнейшие опыты могут столкнуться с проблемами) и убедитесь, что немного воздуха туда выдохнуть всегда можно: газ очень хорошо сжимаем, его сжимаемость велика. А вот если газ заменить на жидкость, попытка впихнуть ещё немного жидкости в полную колбу в случае успеха, скорее всего, закончится печально: давление вырастет моментально и очень сильно, потому что жидкость плохо сжимается, её сжимаемость мала.
Можно сказать, что сжимаемость позволяет накапливать упругую энергию сжатия в веществе, и именно сжимаемость гораздо больше, чем давление, определяет, сколько энергии в сжатой среде накоплено. Если сжимаемость велика, энергии можно накопить много. Если сжимаемость мала, энергии много не накопишь. Представьте баллон с манометром, показывающим 220 атмосфер давления внутри. Если эту энергию пустить в дело, например, засунуть в ракету, то высоко ли она полетит? Оказывается, всё определяется не тем, сколько атмосфер давления, а тем, что там внутри сжато. Если там воздух, ракета взлетит, а если только вода – не взлетит. Посмотрите, как летают пневмогидравлические ракеты и подумайте, зачем они “пневмо” и зачем гидравлические. Тот же самый принцип используется в гидроаккумуляторах в домашней системе водоснабжения – вода не позволяет накопить много энергии сжатия, чтобы не включать каждый раз насос, когда вы открываете кран, а газ – легко.

Сжимаемость нефти больше сжимаемости воды, но гораздо меньше сжимаемости газа, поэтому при добыче нефти, если не замещать доставаемый объём из месторождения чем-то ещё, пластовое давление очень быстро падает. Ещё, когда говорят о сжимаемости, нужно держать в уме, что при наличии породы и различных насыщающих агентов (воды, нефти, газа), сжимаемость (разная) есть у них всех, и кроме этого, можно говорить об общей сжимаемости всей этой системы.

Газовая шапка на месторождении часто играет ту же самую роль аккумулятора, что воздух в пневмогидравлической ракете, поэтому случайно стравить газовую шапку месторождения – значит потерять ту значительную часть энергии, которая могла бы выдавливать в скважины нефть, а еще к тому же пустить нефть туда, где раньше был газ. А всем известно, если пролить куда-то сметану из банки, а потом попытаться собрать ее обратно, чтобы мама не ругалась… часть сметаны обратно собрать не получится, и с нефтью то же самое.

В следующей части мы расскажем, как месторождения образовывались, что с ними происходит в процессе добычи, а также изучим физико-химические свойства нефти, воды и газа.

Источник

Эффективность эксплуатации кустовых скважин

Состав оборудования куста скважин

Куст скважин — это совокупность скважин, устья которых находятся на близком расстоянии друг от друга и располагаются на ограниченном общем основании.

Под куст скважин отводится площадка искусственного или естественного участка территории, на которой располагаются их устья, служебные помещения, необходимое технологическое оборудование, инженерные коммуникации. В состав куста может входить несколько десятков скважин. В состав куста скважин, как правило, входят:

Отсыпка основания кустовых площадок

Начальным и основным этапом в строительстве кустовых площадок является создание качественного основания. Так как нефтедобыча происходит в основном на нестабильных, часто болотистых, почвах Севера, то необходима отсыпка и уплотнение технологических площадок и дорог, ведущих к ним. Отсыпка обычно производится с применением грунтов, песка и гравия. Основание под установку буровой вышки бетонируется.

Обустройство куста нефтяных скважин

Куст нефтяных скважин – это специальная площадка, которая может быть как естественного, так и искусственного происхождения, на которой расположены устья скважин, удаленные от прочих кустов или одиночных скважин не менее, чем на 50 метров, а также технологическое оборудование и прочие необходимые для нормальной эксплуатации сооружения, инженерные коммуникации, ремонтное оборудование, бытовые и служебные помещения.

В процессе проектирования суммарный дебит куста нефтяных скважин необходимо брать из расчета не более 4 тысяч кубометров в сутки, при значении газового фактора не больше 200 кубометров.

В зависимости от того, какой способ эксплуатации кустовых скважин используется, на технологической площадке должны присутствовать перечисленные ниже сооружения:

Расчеты показывают, что укрупнение кустовых площадок в процессе выбора схем эксплуатации промысла является целесообразным как с экономической (экономия капвложений – 8-10 процентов, длина коммуникаций снижается на 45 процентов), так и с экологической точки зрения.

Обустройство скважин с большими длинами отходов ограничивает использование на них насосов типа ШГН (штанговые глубинные).

Кроме того, возникают сложности, связанные с истиранием труб, которое может привести к аварии (особенно в местах, где НКТ соединяются между собой). Чтобы избежать такого истирания, используются специальные муфты с повышенной прочностью, которые ставятся в местах искривления ствола.

На кустах с большими отходами в качестве насосов используют в основном ЭЦН (электрические центробежные), а также некоторые виды насосов с гидроприводом.

Гидроприводные агрегаты также позволяют обеспечивать подачу ингибиторов, которые защищают от коррозии и парафинистых отложений. Это дает возможность совмещать две технологии: подготовки рабочей жидкости и подготовки нефти, а это позволяет сэкономить на силовых линиях и существенно снизить экологические риски.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Сооружение дальнейших систем, обеспечивающих подготовку нефти, закачку и сброс вод зависит от:

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Объекты, предназначенные для сбора и последующего транспорта получаемого из скважин сырья должны обеспечивать:

Вся добываема газожидкостная смесь идет на ГЗУ (групповую замерную установку), на которой в автоматическом режиме производят периодические замеры дебитов каждой эксплуатируемой скважины.

Какие могут возникнуть сложности

Эксплуатационный процесс усложняется парафиновыми отложениями, которые размещаются на различных элементах системы – выкидные линии, аппаратные устья и трубные колоны. Работе установок препятствует также истирание труб. Такие процессы нередко приводят к аварийным ситуациям и необходимости замены большей части оборудования. Потенциально опасными местами являются соединения двух насосно-компрессорных труб. Для снижения риска применяются муфты с повышенной прочностью. Этими приспособлениями укрепляются искривленные стволы и области стыка инженерных систем.

Применение центробежных электрических насосов – это необходимость для кустов, имеющих большие отходы. Альтернативным вариантом становится установка с гидравлическими приводами.

Гидроприводное оборудование позволяет справиться и с другими проблемами. Внутри больших устройств большой угрозой являются коррозийные процессы и парафиновые отложения. Гидравлика позволяет легко доставить ингибиторы, которые замедляют процесс естественного окисления.

Совмещение двух технологий позволяет улучшить промышленный процесс. Грамотный подход обеспечивает достижение следующих целей:

Современное проектирование предполагает использование инновационных разработок и передовых научных открытий. Специализированное оборудование обеспечивает высокий уровень безопасности и рациональности использования ресурса.

Какие сооружения используются для обустройства месторождений?

Для достижения большей эффективности на территории добычи нефти должно использоваться определенное оборудование. От правильности расстановки отдельных объектов и технологических узлов зависит успешность деятельности.Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Проект требует использования следующих сооружений и оборудования:

Дожимные насосные станции отыгрывают важную роль в функционировании системы добычи нефти. Обустройство кустов нефтяных скважин обычно не обходится без монтажа этого оборудования. Главные узлы устройства отвечают за придание сырью дополнительной энергии, которая способствует быстрой и эффективной транспортировке.

Особенности центральных сборных пунктов

Любой проект учитывает размещение таких пунктов для достижения нормального функционирования куста. Строительство сооружений данного назначения должно позволять осуществлять разделение добываемого сырья на газ, нефть и сточные воды.

Чтобы поддержать нормальную работу станции, очистку стоков проводят до тех пор, пока давление и другие физические показатели не опустятся до необходимого уровня. Неочищенные стоки утилизируют путем их опущения в специально отведенные для этого скважины.

На центральных сборных пунктах проводится первичный учет постигаемого сырья и анализ его содержимого. Тут же осуществляется подготовка нефти, и берутся пробы готового продукта. Работа со сточными водами сводится к полной утилизации, а если имеется возможность – к очищению.

Отделенные от общей массы газы проходит оценку качества и подготовку к дальнейшей транспортировке. Последней стадией работы центрального пункта сбора является подача всех продуктов добычи на главные магистральные трубопроводы.

Разработка куста учитывает сооружение резервуаров для сбора сточных вод и их распределения. Важно соблюдать правила строительства площадок, где будет размещено технологическое оборудование. Рабочие зоны должны быть на 15 см выше уровня земли и иметь бетонное покрытие. При необходимости отвода дождевой воды сооружения размещаются под углом 0,003 градуса. Работа с горючими жидкостями требует установки специального бортика, высота которого составляет 15 сантиметров.

Пункты, где нагревается сырье или размещаются печи, ограждаются бортиками в виде бордюрного камня, земляного вала или сплошной стены.

В любом из этих вариантов ограждение не должно быть меньше 0,5 метров в высоту.

Следует контролировать уровень вибраций и шумового загрязнения от используемого оборудования, чтобы не превышать допустимые санитарные нормы. Современное оборудование позволяет производить обустройство нефтяной скважины и эксплуатацию специальной техники с учетом стандартов и правил. При невозможности использования передовых технологий позаботьтесь о создании:

Современные комплексные пункты сбора позволяют использовать автономные установки, которые имеют различные модификации для адаптации к любым условиям эксплуатации. Чаще такое решение становится оптимальным для месторождений небольшого размера. Не стоит забывать про аварийные и другие резервуары, которые выполняют функцию хранения и ограничения жидкостей от рабочих зон.

Установки для проведения замеров

Чаще всего используются замерные установки типа «Биус» и “Спутник”. Их общее количество и местоположение определяются в процессе технико-экономического расчета. Замерные установки, в случае возникновения такой необходимости, могут быть оборудованы блоками закачки реагентов.

После ГЗУ нефтегазовая смесь по промысловым нефтепроводам поступает либо на СП (сборный пункт), либо на ДНС (дожимную насосную станцию) для проведения её подготовки. Сбор, как правило, предусматривает отдельное поступление обводненной нефти и условно-безводного сырья, для чего от каждой ГЗУ тянут два разных коллектора.

СП бывают следующих типов:

№Полезная информация
1ЦПС (центральные)
2ДНС (дожимные насосные станции)
3КСП (комплексные)

На ЦПС поступающая с ГЗУ нефть подвергается полному циклу предварительной обработки, который состоит из трехступенчатого разгазирования в сепараторах и из доведения до нужных кондиций упругости насыщенных паров добытой нефти. Помимо этого, получаемое сырье подвергают обезвоживанию и обессоливанию, с целью получения нужных товарных кондиций.

Газ, отделенный в сепараторах от нефти, очищают от оставшихся капель жидкости и либо утилизируют, либо перерабатывают, либо используют для собственных нужд и нужд прочих потребителей. На первой и второй ступени газ движется, используя собственное давление, а на конечной ступени его нужно компримировать.

Попутные пластовые воды от сырой нефти отделяют на УПН (установках подготовки нефти), которые, как правило, входят в структуру ЦПС.

В УПН есть специальные резервуары, где добытое сырье отстаивается, трубчатые печи для подогрева нефтяной эмульсии, а также устройства обезвоживания и обессоливания сырья. После прохождения УПН нефть перекачивается в резервуар для товарной продукции, а затем поступает в магистральную трубопроводную систему.

Если нужные кондиции – не достигнуты, то нефть автоматически идет в специальный сепаратор-делитель, а оттуда – повторно на УПН.

Куст в нефтянке что. Смотреть фото Куст в нефтянке что. Смотреть картинку Куст в нефтянке что. Картинка про Куст в нефтянке что. Фото Куст в нефтянке что

Устройство подготовки сырой нефти

Техпроцесс и оборудование УПН должны обеспечивать:

Технологический процесс нефтеподготовки должен отвечать следующим требованиям:

Резервуары

Для УПН куста нефтяных скважин необходимо наличие запасов сырья и место для хранения товарной нефти в следующих объемах:

Также необходимы емкости для хранения сточных и пластовых вод и для приема аварийных сбросов.

Все это обеспечивается, как правило, стандартными стальными резервуарами (например, РВС).

После пропарки и очистки резервуарных емкостей образовавшиеся парафиновые отложения собираются в специальные земляные амбары, чья суммарная емкость определяется из расчета годового количества парафиновых отложений.

Процесс подготовки газа на газовых промыслах

«Сырой» газ от кустов газовых скважин по газопроводам-шлейфам поступает в здание пункта переключающей арматуры (ППА), состоящего из узлов входа шлейфов и пункта распределения метанола. В узлах входа шлейфов происходит выравнивание давления сырого газа и подача в общий коллектор.

Далее сырой газ из ППА направляется на узел подключения дожимной компрессорной станции (ДКС) к УКПГ и поступает в сепараторы установки очистки газа (УОГ), где происходит очистка газа от механических примесей и капельной жидкости.

Далее газ подается на ДКС для компримирования (сжатия объема и повышения давления). Компримирование газа на ДКС осуществляется газоперекачивающими агрегатами (ГПА) в две ступени с последующим охлаждением газа на аппаратах воздушного охлаждения (АВО).

От дожимной компрессорной станции сырой газ через узел подключения ДКС к УКПГпоступает на установку подготовки газа (УПГ) и направляется в абсорберы. В абсорберах газ подвергается процессу гликолевой осушки раствором регенерированного диэтиленгликоля концентрацией 97,5-99,5%, который поглощает влагу из потоков газа.

Далее осушенный газ охлаждается для исключения растепления многолетнемерзлых грунтов и повышения надежности газопровода. Охлаждение в зимний период может быть обеспечено АВО газа, а в теплый период – АВО в сочетании с турбодетандерными агрегатами.

Осушенный газ после охлаждения направляется на установку отключающих кранов (УОК), и поступает в магистральный газопровод для последующей транспортировки к потребителям.

Процесс подготовки газа на газоконденсатных промыслах

Пластовый газ от кустов скважин по газопроводам-шлейфам поступает во входные линии здания переключающей арматуры (ЗПА). Входные линии ЗПА обеспечивают подачу сырого газа из шлейфов в общий коллектор, от которого осуществляется разводка на несколько технологических линий, транспортирующих газ в цех первичной сепарации.

Газожидкостный поток поступает в горизонтальный пробкоуловитель (ПУ), в котором за счет специальных насадок и действия силы тяжести происходит выравнивание потока и отделение от него капельной влаги, механических примесей и жидкостных пробок.

Частично очищенный от капельной влаги и жидкости пластовый газ направляется в первичный сепаратор для более тонкой очистки газа от механических примесей и капельной жидкости и далее в цех подготовки газа (ЦПГ).

ЦПГ обеспечивает разделение газа пластового (газоконденсатной смеси) на – газ сухой и конденсат газа нестабильный. Принцип действия установки заключается в том, что газожидкостный поток проходит последовательно несколько ступеней разделения, отличающихся условиями (температурой, давлением). Параметры разделения в каждой ступени обеспечивают максимальную конденсацию и выделение жидкой фазы из газового потока.

Из цеха первичной сепарации газ транспортируется на площадку аппаратов воздушного охлаждения, где в зимний период производится охлаждение газа в воздушных холодильниках (ВХ), а в летний период – ВХ с турбодетандерными агрегатами. Необходимость охлаждения газового потока связана с тем, что понижение температуры позволяет конденсировать (выделять) капельную жидкость, распределенную в газовом потоке. При этом, чем глубже охлаждение, тем больше количество жидкости выделится из потока газа.

После охлаждения поток газа подается в блок промежуточного сепаратора для выделения жидкости и далее в блок низкотемпературного сепаратора, где происходит дальнейшее понижение температуры газового потока клапаном-регулятором при помощи дроссельного эффекта.

В низкотемпературном сепараторе при помощи специальных сепарационных и фильтрующих элементов за счет действия центробежных сил происходит максимальное отделение капельной жидкости от газа и окончательная очистка. После низкотемпературного сепаратора газ поступает в узел замера (УЗГ).

После замера потоки газа из технологических линий ЦПГ объединяются в газосборном коллекторе и транспортируются в здание аварийных кранов, и далее в магистральный газопровод к потребителям.

Эффективность эксплуатации кустовых скважин, их преимущества и недостатки. Особенности проектирования

К основным недостаткам кустового бурения относятся:

В то же время применение кустового бурения и эксплуатация кустов скважин значительно сокращает вспомогательные и строительно-монтажные работы, что способствует сокращению количества инженерных коммуникаций, таких как линии электропередач, дороги, трубопровод. Куст скважин гораздо проще и легче в обслуживании, для процесса добычи полезного ископаемого кустом скважин требуется меньше технологического оборудования, что становится причиной упрощения процесса добычи и количества оборудования, сокращению объемов перевозок, повышению рентабельности процесса разработки всего месторождения и т.п. Например, применение куста скважин в условиях болота снижает объем отсыпных работ. Кустовое бурение также доказало свою эффективность в обнаружении залежей полезного ископаемого в зоне шельфа, а также под сооружениями и водными объектами.

Использование кустовых скважин на заповедных и плодородных землях также более эффективно, чем применение традиционных способов, так как сокращается объем земель, нуждающихся в восстановлении (которое занимает десятки лет). Схема куста скважин изображена на рисунке ниже.

Таким образом, эффективность эксплуатации куста скважин гораздо выше, чем одиночных, особенно на месторождениях со сложным геологическим строением. Поэтому в настоящее время предприятия нефтегазовой отрасли отдают предпочтение именно этому способу эксплуатации скважин, если на то существуют все необходимые условия и экономическое обоснование.

Основным показателем, который используется в процессе проектирования куста скважин, является оптимальное число скважин в кусте. Это число должно определяться с точки зрения экономической целесообразности, пожарной безопасности, технических возможностей проходки скважины. В целях пожарной безопасности установлено, что суммарный дебит куста скважин не должен превышать 4000 тонны в сутки, а газовый фактор 200 кубометров на одну тонну. С экономической точки зрения оптимальным количеством скважин в кусте считается такое, при котором себестоимость каждой из них минимальна. С технической точки зрения максимальное число скважин в кусте рассчитывается по следующей формуле:

Здесь апр — максимально допустимое отклонение скважины от вертикали; t – плотность сетки разработки месторождения; b – горизонтальное расстояние между рядами скважин; h – горизонтально расстояние между скважинами в ряду.

Экологические проблемы кустовых площадок

С чем же связаны проблемы загрязнения окружающей среды, возникающие на кустовых площадках? Ответ прост. Кроме отходов бурения, буровых растворов и ГСМ, размещаемых на территории технологических площадок, опасность представляют разливы и утечки нефти, которые происходят из-за повышенных нагрузок на технологические трубопроводы и пропусков в запорной арматуре. При несоблюдении природоохранных мероприятий опасные вещества могут проникать в грунтовые воды. Наибольшая опасность возникает при таянии снегов, когда в результате паводков загрязненные воды попадают в водные объекты и прилегающие территории.

Для предотвращения возникновения аварийных ситуаций необходимо производить гидроизоляцию технологических площадок геомембраной, а также в процессе их эксплуатации проводить ряд важных мероприятий:

Невыполнение природоохранных мероприятий влечет за собой заражение почв, водных объектов, лесных массивов. Если аварийная ситуация все же имеет место, то необходимо проводить очистку водоемов и рекультивацию земель в соответствии с установленными правилами.

Применение геомембраны в качестве гидроизоляционного материала обеспечивает высокий уровень защиты окружающей среды и выводит нефтедобывающее предприятие на новый уровень экологической безопасности.

Компания АНИКОМ является надёжным партнёром с многолетним опытом производства и поставки пленки полиэтиленовой гидроизоляционной светостабилизированной черной(геомембраны) и аппаратов для сварки полотнищ пленки при конструировании противофильтрационного экрана в шламовых амбарах, резервуарах и на технологических площадках кустового основания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *