Линейный привод что это такое
Актуаторы. Виды и устройство. Работа и применение. Особенности
Актуаторы представляют собой специальные устройства, главной задачей которых является перенос усилия с управляющего или регулирующего механизма на исполнительный. В большинстве случаев это электромеханический агрегат, который позволяет выполнять круговые либо линейные перемещения. Благодаря этому можно значительно облегчить выполнение технологических операций, тестирование, в том числе упростить условия быта. Эти устройства применяются и для совершения специфических задач, к примеру, для осуществления миссий и проведения исследований в космическом пространстве.
Актуаторы бывают линейными и устройствами вращения.
Линейные
Семейство устройств, которые обеспечивают преобразование механической энергии в линейное перемещение. В большинстве случаев такие устройства применяются с целью получения механической энергии из электрической. Выполняются такие устройства из подвижного штока, который устанавливается в корпус из металла или пластмассы. Чтобы к агрегату поступала электроэнергия, предусматриваются разъемы, вилки или кабели. В зависимости от конструкции привод может потреблять 12, 24, 36 либо 220 В.
Линейные агрегаты имеют два основных исполнения:
То есть конструкция агрегата такова, что шток перемещается в вертикальном либо горизонтальном направлении по отношению к валу мотора.
К преимуществам линейных агрегатов можно отнести:
Конкретные агрегаты в зависимости от модели могут дополнительно иметь защиту, которая обеспечивает стойкость к неблагоприятным условиям.
Актуаторы вращения
Работают несколько иначе. У них имеется редуктор и электродвигатель. Особенность работы такого агрегата в том, что чем ниже передаточное число шестеренок редуктора, тем выше скорость и меньше крутящий момент.
В агрегатах вращения могут применяться различные типы редукторов:
Благодаря разнообразию редукторов вращающие агрегаты способны решать разнообразные задачи. Поэтому они находят широкое применение в электроэнергетике, станках, бытовых устройствах, в промышленности и других отраслях.
Существуют и специальные виды актуаторов. Подобные агрегаты предназначены для решения специфических и наиболее сложных задач. Их часто применяют в космическом, а также водном пространстве. Также они находят применение в условиях вечной мерзлоты. По конструктивным составляющим они не сильно отличаются от аналогичных агрегатов. Однако их главное отличие – качество исполнения герметичности корпуса. Благодаря пылеустойчивости и водонепроницаемости удается обеспечить бесперебойность работы агрегата даже в сложнейших условиях.
Устройство
Имеется большое количество разных методов для создания линейного перемещения в линейном актуаторе. В большей части случаев используется движок, который передает движение штоку. Шток выдвигается или втягивается, перемещаясь по направляющей. Линейные актуаторы для обеспечения линейного перемещения в большинстве случаев применяют винт, то есть так называемую винтовую передачу. Благодаря вращению винта относительно гайки или наоборот обеспечивается линейное движение штока.
Движки, применяемые в линейных агрегатах, чаще всего представляют собой стандартные коллекторные устройства, работающие на постоянном токе в 12 или 24 В. Более мощным агрегатам требуется электроток на порядок большего значения. Однако возможно применение и других типов движков.
Для изменения направления движения штока следует поменять направление вращения движка. Для примера, в коллекторном движке следует сменить полярность электропитания. С этой целью в конструкцию добавляется переключатель, благодаря нему происходит смена полярности электропитания. В результате простым нажатием кнопки можно изменить вращение движка, а значит попеременно выдвигать или втягивать шток.
Работа
Имеющиеся сегодня линейные актуаторы могут иметь разный ход штока. Это значит, что агрегаты создаются с разными длинами корпуса и винта. Кроме длины хода важнейшее значение имеют скорость и усилие, которые создаются на штоке агрегата. Чтобы обеспечить требуемую скорость и усилие штока, требуется модернизация устройства. Для этого между валом движка и винтом ставится редуктор механического действия.
Движок передает на вал скорость и усилие, которые являются неизменными. Движок же меняет отношение скорости и момента кручения, благодаря чему меняется конечная скорость перемещения штока, а также создаваемое усилие. Движение винта также представляет передачу, которая влияет на скоростное и силовое отношение. Меньший шаг винтовой передачи обеспечивает большее усилие. Однако шток при этом будет перемещаться с меньшей скоростью.
Чтобы можно было остановить шток в необходимом положении, в агрегат ставятся концевики. Их также называют выключателями. Концевики ставятся непосредственно на шток. Они начинают работать в момент, когда гайка достигает крайнего положения. С этой целью ставятся датчики в конечные положения. Когда шток доходит до этого положения, то датчик выключает электропитание. Далее шток сможет двигаться только в обратном направлении. Для этого меняется полярность электропитания либо осуществляется реверс движка.
Как пример можно рассмотреть актуатор центрального замка автомобиля. В его работе используется небольшой электродвижок, соединенный с подвижным штоком. К нему приделана тяга от замка. В момент подачи напряжения начинает работать движок, который заставляет вал вращаться в требуемом направлении, что приводит к движению штока. Вместе со штоком в движение приводится и тяга, у которой один конец находится на рычаге замка. В результате осуществляется блокирование или освобождение замка.
Так как штоку требуется короткий ход, то движок быстро заклинивается. Вследствие этого необходимо ограничивать время подачи напряжения. Для этого используется блок управления, который точно дозирует временной интервал подачи электропитания. Благодаря этому движок защищен от заклинивания и перегорания.
Применение
Актуаторы находят широкое применение практически повсеместно. Их можно задействовать в разнообразных устройствах, к примеру, для регулировки положения телевизионного приемника, для перемещения пандуса, в станках, компрессорах, игрушках, самолетах, подводных лодках, пароходах и космических кораблях и т.п.
В медицине данные агрегаты задействованы для медицинской мебели, чтобы регулировать положения спинки кресла, кровати и другой мебели. Их ставят на подъемники, чтобы перемещать инвалидов и больных с одного этажа на другой. При этом такие устройства преимущественно имеют минимальную шумность, а также высокие значения по качеству и надежности.
В промышленности актуаторы применяются для автоматизации технологических процессов и оборудования. В большинстве случаев это компактные агрегаты, обладающие высокими показателями мощности. Их используют на заводах и фабриках для линейного перемещения. Большое значение здесь имеют технические показатели, в первую очередь это касается нагрузок, скорости, плавности перемещения, в том числе возможности функционировать в неблагоприятных условиях.
Использование промышленных агрегатов позволяет существенно облегчить людской труд, а также снизить финансовые затраты. Благодаря ним, в конце концов, снижается стоимость производимой продукции.
Можно выделить следующие области промышленного применения:
В сельском хозяйстве приводы линейного перемещения позволяют максимально автоматизировать труд при возделывании агрокультур, заготовлении кормов, при уходе за фермерскими животными и так далее.
К примеру, это могут быть разбрызгивающие устройства для обработки почв, растений от вредителей, устройства для внесения удобрения. На больших фермерских хозяйствах линейные агрегаты позволяют регулировать воздушные потоки и автоматизировать подачу кормов для животных при кормежке. В растениеводстве линейные приводы помогают открывать теплицы, чтобы огурцы или помидоры не «сгорели» от жары.
Для быта данные актуаторы просто незаменимы. Их можно встретить во многих бытовых приборах. К примеру, это могут быть шторы, жалюзи с приводом и так далее. Все автомобили просто напичканы данными устройствами. Они используются в замках багажника, дверей, магнитол с выдвижным дисплеем и тому подобное. Это полезные устройства, которые позволяют решать многочисленные задачи.
Самое главное о линейных электродвигателях
Линейные электродвигатели обеспечивают привод оборудования с поступательным или возвратно-поступательным движением рабочих механизмов. Применение подобного типа машин позволяет упростить кинематику процесса, уменьшить потери в передачах и повысить надежность привода в целом.
В условиях производства помимо эл/приводов с вращающимся принципом действия применяют электротехнические устройства, преобразующие электрическую энергию в энергию поступательного движения. Исходя из характера перемещения, они получили название линейные двигатели. Представлены разными конструктивными и техническими решениями зарубежного и российского производства.
Назначение и основные виды
В общем случае линейный электродвигатель, также как и электромотор с вращающимся приводным механизмом обеспечивает механическое перемещение рабочих частей оборудования, но в одной координатной плоскости. Это могут быть двигатели для чпу, конвейеров, транспортеров, промышленных роботов и других производственных агрегатов. Подобные группы механизмов широко используются в сфере электротранспорта. Отличительная особенность приводных устройств состоит в обеспечении линейных перемещений без механических передач. Они относятся к машинам малой мощности, но в то же время достаточной, чтобы выполнять обширный перечень рабочих задач.
В зависимости от конструктивных особенностей структурных элементов и принципа действия различают следующие типы линейных двигателей (ЛД):
Отдельные ЛД, например, асинхронные или линейные шаговые двигатели, имеют идентичный принцип действия относительно аналогичных электромоторов с вращательным механизмом. В то же время другие эл/приводы, такие как линейные пьезоэлектрические двигатели, соответствующих аналогов не имеют. В зависимости от типа эл/мотора они могут обладать разными параметрами скорости, нагрузочными характеристиками и подключаться к питающей сети 48, 36, 24 или 12 вольт.
Относительно показателя динамичности, то есть способности быстро развивать нужную скорость, линейные приводы подразделяются на две группы:
Первая категория электромоторов находит применение в качестве тяговых механизмов транспортных средств, в металлообрабатывающем станочном оборудовании, иных технологических установках. Например, линейные асинхронные двигатели являются оптимальным вариантом для приведения в действие ленточных конвейерных агрегатов. Моторы второй группы относятся к малогабаритным решениям и предназначены для кратковременного разгона объектов.
К категории приводных устройств прямолинейного перемещения также относят свободно-поршневые или линейные двигатели внутреннего сгорания. Это обусловлено возвратно-поступательным движением поршня, являющимся основной рабочей частью мотора. При этом рабочий орган двигательной системы находится в замкнутом цилиндрическом объеме и приводится в действие разными способами.
Конструктивное решение
Принципиальная конструкция линейного эл/привода зависит от типа электродвигателя, тем не менее классическая магнитная пара статор-ротор присутствует практически в каждом решении. Исключением могут быть линейные двигатели внутреннего сгорания, в которых ход поршневого механизма осуществляется посредством сжатого воздуха, пружинного устройства и самого веса поршня. Таким образом, устройство ЛД предусматривает две основных функциональных части:
Один из структурных элементов агрегата перемещается, тогда как второй находится в неподвижном состоянии. В большинстве случаев схема линейного двигателя выполнена из условия перемещающегося якоря и стационарного индуктора. Но существуют и обращенные технические решения с неподвижным вторичным и передвигающимся первичным элементом. Этот вариант исполнения получил широкое распространение в электротранспорте.
В отличие от цилиндрических форм в электродвигателях вращающегося типа статор ЛД представляет собой плоский магнитопровод, содержащий трех- или двухфазную развернутую обмотку. Имеет шихтованную конструкцию, состоящую из пакета плотно уложенных металлических пластин. Вторичный элемент, называемый также бегуном, представляет собой стальной каркас, на котором зафиксированы постоянные магниты или обмотка.
Принцип действия
Линейный электропривод работает практически также, как и вращающийся эл/двигатель. Магнитопровод подключается к сетевому питанию, в результате чего возникает магнитное поле. Отличие состоит в создании индуктором не вращающегося, а бегущего магнитного потока. С другой стороны подвижный якорь с расположенными на нем полюсами имеет свою магнитную область. Принцип работы заключается в возникновении электромагнитных сил при взаимодействии магнитных потоков индуктора и бегуна. Эти силы направлены противоположно друг другу и стремятся линейно переместить подвижную часть относительно неподвижной.
При конфигурировании ЛД особое значение имеет точное соблюдение величины воздушного зазора между статорным и якорным устройством. От этого напрямую зависят нагрузочные характеристики ЛД. То есть чем больший по размеру будет зазор, тем меньшее усилие сможет воспринимать электропривод. Поэтому рабочий стол станков с использованием линейного шагового двигателя или иного привода этой категории выполняют с максимально точным монтажным исполнением. Это позволяет должным образом уложить направляющие элементы приводной системы.
Асинхронные электроприводы
Линейные асинхронные двигатели относятся к наиболее распространенным видам электромоторов с поступательным движением. Работают в соответствии с вышеописанным принципом. Отличаются простой структурой бегуна и в зависимости от его типа подразделяются на следующие группы:
Отличительная особенность линейного асинхронного двигателя с постоянными магнитами состоит в практически полном отсутствии сил притяжения бегуна к статору, что важно для некоторых разновидностей электроприводов. Во многих приводных машинах, в том числе в составе станков с ЧПУ, линейный асинхронный двигатель осуществляет возвратно-поступательное движение. Поэтому он должен иметь хорошие пусковые характеристики, что достигается выбором бегуна с повышенным активным сопротивлением.
Существенный недостаток, которым обладают линейные асинхронные двигатели, состоит в наличии краевого эффекта. Данное явление представляет собой комплекс электромагнитных процессов ухудшающих рабочие характеристики ЛД. Это обусловлено разомкнутой конструкцией статора, являющейся причиной появления тормозных усилий, возникновения поперечных сил, стремящихся сместить подвижную часть в поперечном направлении.
Одной из разновидностей асинхронных ЛД является трубчатый линейный двигатель, называемый также коаксиальным или цилиндрическим. Принципиальное отличие эл/привода состоит в круговом расположении обмоток (на рисунке поз.2) относительно постоянных магнитов. При этом магнитные элементы сформированы в виде цилиндра (поз.1). Упрощенно схема линейного двигателя представляет собой трубчатый объем, на который необходимо намотать электрический проводник. Выглядит это следующим образом:
Цилиндрический линейный двигатель не имеет сердечника, являющегося источником излишнего нагрева под воздействием вихревых токов. В нем также не возникает дополнительных усилий в области между электрообмотками и цилиндром. Это способствует более плавному, равномерному движению при любых величинах скорости. Как результат, КПД линейного двигателя трубчатого типа заметно выше, чем аналогичный показатель у плоского привода.
Ввиду симметричной конструкции цилиндрический линейный двигатель не столь чувствителен к неравномерности размеров зазора, что упрощает его монтаж и изготовление. Благодаря симметрии он также превосходит в эффективности использования магнитного поля и требует вдвое меньшего числа редкоземельных магнитных материалов, чем плоский линейный асинхронный двигатель. Это обеспечивает существенную экономию при изготовлении электродвигателя.
Шаговые электромоторы
Линейные шаговые двигатели преобразуют последовательность электрических сигналов не во вращательное, а в поступательное прямолинейное движение. Они применяются в технологиях, требующих перемещения объектов в плоскости. Это могут быть двигатели для ЧПУ станков или графопостроители современных ЭВМ. Использование линейного шагового двигателя упрощает кинематическую схему эл/привода.
Плоский статор изготавливается из магнитомягкого материала. Для подмагничивания магнитопроводов устанавливаются постоянные магниты. Якорь ЛД перемещается в соответствии с принципом аналогичным мотору вращения только в прямолинейном направлении. Для этого на плоскости подвижной и неподвижной части выполнены зубцы равных размеров. В пределах одной секции бегуна линейного шагового двигателя зубцы смещены на половину своей ширины t/2, а во второй части – на четверть t/4. При этом вне зависимости от места расположения бегуна, обеспечивающего процесс подмагничивания, магнитное сопротивление будет оставаться одинаковым.
Линейные шаговые двигатели между статором и подвижной частью имеют минимальный магнитно-воздушный зазор, через который происходит взаимодействие. При этом практически отсутствует сопротивление перемещению, в результате линейный шаговый двигатель обеспечивает высокоточное позиционирование.
Линейный актуатор в традиционном исполнении представляет собой линейные двигатели постоянного тока, выполненные на базе коллекторных моторов. В подобных устройствах вращение преобразовывается в поступательное движение посредством редуктора, гайки и длинного винта, соединенных с выходным валом. В связи с тем, что такая конструкция не способна обеспечить точность перемещения или требуемые параметры скорости применяют электропривод с шаговым двигателем вращения, у которого вместо стандартного вала реализуется одна из следующих конструкций:
Линейный шаговый двигатель или актуатор первого вида имеет в своей конструкции удлиненный вал с нанесенной на него резьбой и гайку, поступательно перемещающуюся вдоль вала. При этом сама гайка стационарна. Длина винта-вала соответствует длине хода.
Во втором случае линейный шаговый двигатель обеспечивает прямолинейное движение посредством выдвижного штока и соединенного с ним выходного вала с резьбой. Приложение внешней нагрузки производится непосредственно на шток.
Вариант полой центральной части с внутренней гайкой предусматривает установку ходового винта. Последний по мере вращения гайки движется параллельно своей оси и может выходить по обе стороны эл/мотора.
Линейные шаговые двигатели в виде актуаторов предназначены для построения систем с поступательным перемещением объектов с небольшой скоростью и высокой точностью при работе в ограниченных рабочих пространствах.
Моторы внутреннего сгорания
Этот тип моторов кардинально отличается от классического электрического привода, например, такого как асинхронный линейный двигатель, поскольку имеет принципиально иное устройство и метод работы. По сути это двигатель внутреннего сгорания, но без сложного и громоздкого кривошипно-шатунного механизма. Подобные типы линейных двигателей имеют мертвый (неподвижный) замкнутый контур, в объеме которого прямолинейно перемещаются один или два поршня. Свободное перемещение поршневого устройства обеспечивается сжатым воздушным потоком, находящимся в смежных емкостях, пружинным элементом и массой самого поршня.
Линейные двигатели внутреннего сгорания имеют более простое конструктивное исполнение по сравнению с традиционным вариантом с кривошипно-шатунной системой. Они более уравновешенны, долговечны, обладают компактными размерами. На базе приводов этого типа выполняют электрические генераторы, дизель-молоты. Существенным недостатком свободно-поршневых агрегатов является сложный пуск и управление линейным двигателем. Это связано с отсутствием каких-либо жестких связей в составе приводного механизма
В большинстве случаев запуск установки осуществляется посредством сжатого воздуха. В то же время благодаря развитию микропроцессорных технологий проводят эксперименты в части электронного пуска и управления процессом. Такими способами являются:
Учитывая перспективность нового направления, многие энтузиасты выполняют расчет линейного механизма, после чего своими подручными средствами и собственными руками создают модели электрических генераторных машин. С этой целью цилиндрами служат трубки из стекла, поршнями становятся бобышки из графита, а источником искры – плата бытового устройства для розжига газовой плиты. При желании можно создать небольшой мотор и успешно его использовать как автономный источник электроэнергии. При этом необходимо учитывать, что при использовании постоянных магнитов должна быть организована достаточная система охлаждения. Это вызвано тем, что магнитные элементы имеют свойство при достижении определенного уровня температуры размагничиваться.
Линейный привод
Ниже приведены схемы реализации линейного перемещения трех видов наиболее распространенных кинематических схем портального механизма, которые используются в современном станкостроении: шарико-винтовой пары (ШВП), реечной передачи (шестерня-рейка) и линейного двигателя (прямого привода).
Шарико-винтовая пара
Реечная передача
Линейный двигатель
Сравнение ШВП с прямым приводом
Конструкция ШВП предполагает большое количество механических сопряжений, что приводит к износу частей шарико-винтовой пары и как следствие потери точности обработки. В свою очередь, линейный двигатель состоит всего из двух частей, взаимодействие которых происходит исключительно на электромагнитном уровне. Механического контакта между частями нет, следовательно, нет механического износа самого линейного привода.
Следует отметить, что присутствует дополнительная сложность реализации систем ШВП для длинных ходов, что обусловлено дополнительными механическими напряжениями вследствие прогиба винта. Для таких систем требуется точный инженерный расчёт и использование высококачественных комплектующих. Поэтому производители, не обладающие достаточным инженерно-научным потенциалом, делают координатные системы ШВП с низкой надёжностью, либо избегают её использования.
Сравнение особенностей реечной передачи с прямым приводом
Реечная передача лишена таких недостатков ШВП, как прогиб и высокая инерционная нагрузка на двигатель, но требует ещё более высококачественного исполнения координатной системы: высокоточной установки направляющих, зубчатой рейки, редуктора и двигателя. При должном качестве изготовления станины и сборке, современная зубчатая передача на основе закалённой шестерни-рейки обеспечит длительную и стабильную работу станка.
Однако погрешности в изготовлении станины или установке направляющих могут привести к появлению люфтов и быстрого механического износа привода. Поэтому, как и в случае с ШВП, производители, не обладающие опытом и технологиями высокоточного изготовления координатных систем, либо не могут обеспечить должной надёжности станка, либо избегают использования реечной передачи.
Рассмотрим процесс управления в каждом случае
ШВП и реечная передача содержат большое количество элементов, способных со временем подвергаться износу: вал, шкив, винт, шарики, гайку и т.п. Линейный двигатель в свою очередь содержит только ротор и статор, разделенные воздушны зазором. Между источником энергии и рабочим органом не располагается никаких промежуточных элементов, а передача энергии осуществляется через воздушный зазор. Благодаря отсутствию механических сочленений линейный привод лишен механических люфтов.
В силу меньшего количества этапов преобразования электрической энергии в поступательное движение, линейный привод обладает лучшим КПД, нежели привод на ШВП или зубчатой рейке.
Сравнение характеристик различных типов приводов
Износ
В отличие зубчатой передачи и координатных систем на ШВП, линейный привод не содержит механических компонентов, поэтому обладает высокой степенью надежности и не подвержен износу.
Люфты
Механические люфты системы напрямую влияют на повторяемость позиционирования координатной системы. В силу большего количества механических сочленений координатные системы на ШВП и зубчатой рейке имеют большую величину механического люфта, тогда как координатные системы на линейном приводе лишены механических люфтов.
Точность на длинных ходах
Точность на длинных ходах в случае координатной системы на линейном приводе определяется точностью системы обратной связи по положению (магнитной или оптической линейкой), а также точностью установки портала (прямого угла) и самой системы слежения. В случае координатных систем на основе ШВП или зубчатой рейки, точность определяется качеством изготовления станины и установки направляющих. В обоих случаях, чтобы компенсировать отклонения на больших ходах, требуется калибровка координатной системы при помощи лазерного интерферометра. При отсутствии надлежащего качества производства и инженерно-технических возможностей для калибровки координатной системы, использованием прямого (линейного) привода является более предпочтительным в силу своей простоты.
Динамика
Координатные системы на базе ШВП и зубчатой рейки значительно уступают линейному приводу в том, что касается динамических характеристик. Основной причиной этому являются их конструктивные и технологические особенности (большое количество промежуточных элементов, зазоры, резко меняющееся трение во множестве сопрягаемых деталей, погрешности в шаге винта и многое другое). Все это со временем сказывается на динамических характеристиках станка.
В свою очередь, в системах с линейным приводом решены вопросы обеспечения требуемых динамических характеристик как при управлении траекторией движения, так и при обеспечении должной точности позиционирования.
Надёжность
В силу меньшего количества механических компонентов и сочленений система на линейном приводе обеспечивает наиболее высокий уровень надёжности. Однако, всегда следует помнить, что привод является не единственным компонентом станка лазерной резки, и следует оценивать общую надёжность системы в целом.
Точность контурных перемещений мало зависит от типа привода и определяется в первую очередь механической жёсткостью конструкций координатной системы (в т.ч. портала), а также частотным ответом координатной системы (который, в свою очередь, зависит от конструктивных особенностей портала, крепления головки и других компонентов).
Точность контурных перемещений также связана с динамическими характеристиками координатной системы. Установив мощный привод можно добиться высокой динамики на холостых ходах (с отключенным инструментом), но для обеспечения точности, если конструкция станка недостаточно жёсткая, требуется значительное понижение значений ускорений и торможений.
Стоимость
Координатная система на линейном приводе дороже, чем координатная система на ШВП или зубчатой рейке. Это объясняется тем, что для прямого привода требуется длинная «магнитная дорога», вдоль которой и движется привод, собранная из мощных неодимовых магнитов. В то время как у обычного серводвигателя количество таких магнитов значительно меньше и они находятся на роторе, который поворачивается множество раз в пределах рабочего хода координаты.
Таблицу можно прокручивать влево/вправо
Координатная система на ШВП | Координатная система на зубчатой рейке | Линейный двигатель |
---|---|---|
Подвержена износу. Высокий износ при некачественном изготовлении. | Подвержена износу. Высокий износ при некачественном изготовлении. | Отсутствие изнашиваемых компонентов. |
Наличие люфтов в тележках и приводе, влияющих на точность. | Наличие люфтов в тележках и приводе, влияющих на точность. | Отсутствие механических люфтов. |
Снижение точности на длинных ходах. | Снижение точности на длинных ходах. | Высокая точность на любых ходах. |
Средняя динамика. | Высокая динамика перемещения (при использовании мощного привода). | Высокая динамика перемещения (при использовании мощного привода). |
Высокая надёжность при должном качестве изготовления. | Высокая надёжность при должном качестве изготовления. | Высокая надёжность. |
Средняя стоимость. | Средняя стоимость. | Высокая стоимость. |
Выводы
Линейный привод обладает рядом неоспоримых преимуществ, по сравнению с ШВП или реечной передачей. Сам по себе линейный привод увеличивает срок службы оборудования, повышает точность координатной системы и динамику перемещений.
Компания Unimach производит станки на всех трёх типах приводов: ШВП, зубчатой рейке и линейном (прямом) приводе, что позволяет всегда предложить наиболее эффективное решение с точки зрения цены, производительности и надёжности для каждой задачи.
Согласие на обработку персональных данных
Пользователь, посещающий Сайт unimach.ru (далее – «Сайт»), вправе принять настоящее Согласие на обработку персональных данных (далее — Согласие). А акцептом оферты является проставление Пользователем «галочки» и нажатие кнопки «Дать согласие на обработку персональных данных» в размещенной для этой цели веб-форме раздела Сайта, касающегося предоставления персональных данных в формах обратной связи. Пользователь дает свое согласие ООО «НПК Морсвязьавтоматика» (далее – ООО «НПК МСА», «Оператор»), которому принадлежит Сайт, расположенное по адресу: 192174, г. Санкт-Петербург, ул. Кибальчича, д.26, лит. Е, на обработку своих персональных данных со следующими условиями:
Данное Согласие дается на обработку персональных данных как без, так и с использованием средств автоматизации.
Согласие на обработку персональных данных Пользователя дается с целью использования ООО «НПК МСА» данных для осуществления обработки запросов, коммуникаций и аналитики действий Пользователей на Сайте. Согласие предоставлено для использования следующих персональных данных: фамилия, имя, отчество; номера контактных телефонов; адреса электронной почты; место работы и занимаемая должность; адрес; сведения о местоположении; тип, версия, язык операционной системы, браузера; тип устройства и разрешение его экрана; страницы, открываемые пользователем; ip-адрес и др.
С персональными данными могут быть совершены следующие действия: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение.
Сбор персональных данных Пользователей Сайта производится через формы обратной связи, которые Пользователь заполняет собственноручно. Также персональные данные могут быть получены Компанией, если их владелец указывает их в электронном письме, отправляемом в Компанию на адреса, указанные на Сайте. Оператор обеспечивает сохранность персональных данных и принимает все возможные меры, исключающие доступ к персональным данным неуполномоченных лиц.
Также на Сайте происходит сбор и обработка обезличенных данных о Пользователях (в т.ч. файлов «cookie») с помощью сервисов интернет-статистики (Яндекс Метрика и Гугл Аналитика и других). Обезличенные данные Пользователей, собираемые с помощью сервисов интернет-статистики, служат для сбора информации о действиях Пользователей на Сайте, улучшения качества сайта и его содержания. Оператор обрабатывает обезличенные данные о Пользователе в случае, если это разрешено в настройках браузера Пользователя (включено сохранение файлов «cookie» и использование технологии JavaScript).
Передача персональных данных третьим лицам осуществляется на основании законодательства Российской Федерации, договора с участием субъекта персональных данных или с его согласия.
Обработка может быть прекращена по запросу субъекта персональных данных.