Луч в математике что это такое 2 класс
Класс: 2
Презентация к уроку
Ход урока
I. Организационный момент.
II. Актуализация знаний.
Слайд 3. Решив данные примеры и расположив ответы в порядке возрастания, вы узнаете, в чье королевство мы сегодня отправимся за новыми знаниями.
Появляется слово «Точка». «Молодцы!» (Слайд 4)
III. Работа над темой урока. Сказка про Точку.
Слово учителя: Сегодня мы отправимся в увлекательное путешествие по стране Геометрии. Встречает нас здесь королева этой страны, без которой невозможно построить ни одной фигуры, это Точка (Слайд 5).
Жила-была Точка. Она была очень любопытна и хотела все знать. Увидит незнакомую линию и непременно спросит:
— Как эта линия называется?
— Длинная она или короткая?
Подумала однажды Точка: «Как же я смогу все узнать, если всегда буду жить на одном месте? «Отправлюсь-ка я в путешествие!».
— Ребята, вы готовы совершить путешествие вместе с Точкой? (Да).
— Ребята, а скоро ли конец прямой? (У прямой нет конца).
— Ребята, сможет ли Точка найти концы прямой? (Нет)
— Опечалилась Точка. Что же, так мне и придется идти, идти и идти без конца?
— А что если я позову на помощь Ножницы?
Тут откуда не возьмись, появились Ножницы. Щелкнули перед самым Точкиным носом и разрезали прямую (Слайд 8)
— Ура! Воскликнула Точка. Получился конец, да не один, а целых два, с одной стороны и с другой! Что же стало с моей прямой? (Слайд 9) Как называется получившаяся фигура? (Отрезок). Чем отличается от прямой? (Имеет начало и конец).
— А я знаю почему они так называются. Воскликнула Точка. Они похожи на солнечные лучики! Солнечные лучи начинаются на солнце и идут от солнца без конца. В Геометрии каждый луч, отрезок, прямая имеют название. Обратите внимание, что луч обозначается либо одной строчной буквой, либо двумя прописными, причем при чтении и записи на первом месте указывается начало луча, а при названии прямой или отрезка порядок не имеет значения. Точка обозначается одной буквой. Давайте правильно прочитаем название фигур (Буквы латинского алфавита). Слайд 11
— В чем отличие прямой от луча? Отрезок от прямой? Луч от отрезка?
Слайд 13. Физминутка. Учащиеся танцуют под «Танец маленьких утят».
IV. Закрепление пройденного материала.
Работа по учебнику Л.Г.Петерсон Математика 2 класс. Тема: «Луч. Отрезок. Прямая».
№ 1. Откройте тетради. Обозначьте точку. Сколько можно провести прямых через данную точку? (Слайд 14) Какой можно сделать вывод? Вывод: через одну точку можно провести сколько угодно прямых.
№ 2. Поставьте две точки на расстоянии друг от друга (Слайд 15). Сколько можно провести прямых через эти две точки? Вывод: Через две точки можно провести только одну прямую.
V. Итоги урока.
2. Что вы узнали о каждой из этих фигур? (Слайд 17)
НУ ВОТ И ВСЕ, КОНЕЦ! А КТО СЛУШАЛ, МОЛОДЕЦ.
Луч в математике что это такое 2 класс
Луч — это часть прямой линии, расположенная по одну сторону от любой точки, лежащей на этой прямой. Луч также называется полупрямой.
Любой луч имеет начало и направление. Начало луча, начальная точка или вершина луча — это точка, из которой исходит луч. Таким образом, у луча есть начало, но нет конца.
Рассмотрим три луча с общим началом:
Дополнительные лучи
Любая точка, лежащая на прямой линии, делит эту прямую на две полупрямые, то есть на две части. Каждая из этих частей будет называться дополнительным лучом относительно второго луча:
Дополнительные лучи — это лучи, имеющие общее начало, противоположные направления и лежащие на одной прямой. Также можно сказать, что дополнительными называются лучи, дополняющие друг друга до прямой линии.
Обозначение лучей
Луч обозначают одной строчной латинской буквой:
Также луч можно обозначить двумя точками, лежащими на нём:
При обозначении луча двумя точками, на первом месте ставится буква, обозначающая начало луча, а на втором — буква, обозначающая какую-либо другую его точку: луч BC.
Посмотрим на следующий пример:
Луч с началом в точке A можно обозначить как AB или AC.
Основы геометрии
Геометрия — это раздел математики, изучающий геометрические фигуры и их свойства.
Познакомимся с основными геометрическими понятиями, изучаемыми в начальной школе.
Точка
Точка — это основная и самая простая геометрическая фигура.
В геометрии точка обозначается заглавной латинской буквой или цифрой. Многие латинские буквы по написанию похожи на английские буквы.
В тексте точку обозначают следующим символом: « (·) A » — точка « А ».
Прямая
Прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца.
Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна.
Способы обозначения прямых
Способы обозначения лучей
Отрезок
Основное свойство отрезка — это его длина.
Длина отрезка — это расстояние между его концами.
В математике отрезок обозначается заглавными латинскими буквами.
Ломаная
Ломаная — это геометрическая фигура, состоящая из точек, которые соединены отрезками.
Вершины ломаной — это точки, в которых соединяются отрезки, образующие ломаную.
Звенья ломаной — это отрезки ломаной.
В математике ломаная обозначается заглавными латинскими буквами.
Чтобы найти длину ломаной, необходимо сложить длины всех её звеньев (отрезков), из которых она состоит.
KLCM = KL + LC + CM = 3 см + 2 см + 2 см = 7 см
Вот мы и познакомились с основами геометрии. Теперь мы готовы рассмотреть не менее важную геометрическую фигуру — угол.
Луч и его обозначение. 2-й класс (1–4), программа «Начальная школа XXI века»
Класс: 2
Цели:
Ход урока
I. Организационный момент.
Ребята, вы готовы к уроку? (Да.)
На вас надеюсь я, друзья!
Вы хороший дружный класс.
Всё получится у вас!
II. Мотивация учебной деятельности.
— Я очень хочу, чтобы урок получился интересным, познавательным, чтобы мы вместе повторили и закрепили то, что мы уже знаем и постарались открыть для себя что-то новое.
III. Актуализация знаний.
На одной тарелке 3 огурца, а на другой 4.
Сколько помидоров на двух тарелках?
На клумбе росло 5 тюльпанов и 3 розы.
Сколько тюльпанов росло на клумбе?
— Измените вопрос второго текста так, чтобы он стал задачей.
— Измените условие так, чтобы текст стал задачей.
— Решите полученные задачи.
IV. Первичное усвоение новых знаний.
— Начертите такую линию.
— Как она называется?
— Начертите такую линию.
— Как она называется? Чем отличается отрезок от прямой?
— Начертите такую линию.
— Кто знает, как она называется?
— Посмотрите на картинку, вы видите похожие линии, что это?
— Вот и эта линия называется луч. Чем он отличается от прямой и отрезка?
— Это очень интересная фигура: у неё есть начало и нет конца.
— А изображают её так. (Работа на доске и в тетрадях.) Отметим на точку, приложим к ней линейку и по линейке проведём линию.
— Какой бы длинной ни была линейка, весь луч мы всё равно не сможем начертить. На рисунке мы изобразили лишь часть луча, которая показывает направление луча.
— Луч можно начертить в любом направлении:
— Начертите три разных луча у себя в тетради.
— Чтобы отличать один луч от другого, договоримся обозначать луч двумя буквами латинского алфавита так, как мы обозначали с вами отрезки. Писать буквы нужно в строго определённом порядке: первой пишется та буква, которая обозначает начало луча, вторая пишется над или под лучом.
— Посмотрите на рисунок в учебнике. Луч красного цвета обозначен двумя буквами. Какой буквой обозначено начало луча?
— Прочитаем все вместе запись: «Луч АВ»
— Теперь прочитайте следующие записи: луч ВС, луч МК, луч ВА, луч ОХ.
— Важно научиться правильно показывать луч. Мы будем делать это концом указки. (Показ учителем.)
— Теперь посмотрите на плакат. (Подготавливается заранее, на нём 3 луча.) На нём изображены 3 луча. Прочитайте название каждого из них. Называя луч, показывайте его указкой.
Физминутка
1, 2, 3, 4, 5
Все умеем мы считать.
Отдыхать умеем тоже:
Руки за спину положим,
Голову поднимем выше
И легко-легко подышим.
Раз, два – выше голова,
Три, четыре – ноги шире,
Пять, шесть – тихо сеть.
Раз – подняться, потянуться.
Два – согнуться, разогнуться.
Три – в ладоши три хлопка,
Головою три кивка.
На четыре – руки шире.
Пять – руками помахать.
Шесть – за парту тихо сесть.
V. Первичная проверка понимания.
1) Работа с учебником.
— Можно ли нарисовать весь луч?
— В каком направлении можно начертить луч?
Учащиеся называют каждый луч, сначала читая букву, соответствующую началу луча.
Учащиеся чертят в тетради луч, обозначают его буквами.
— Поставьте в тетради точку О. Проведите через неё прямую линию. Сколько получилось лучей?
— Проведите ещё одну прямую линию через эту точку. Сколько теперь лучей?
VI. Организация усвоения способов деятельности.
1) Работа в тетради на печатной основе.
2) Физминутка – офтальмотренажёр.
3) Работа по учебнику
— Прочитайте, какие способы сложения придумал Знайка?
— Найдите результаты сложения такими же способами.
— Что известно в задаче?
— Короче – это больше или меньше?
— Как узнать длину карандаша?
VII. Рефлексия.
— Что нового узнали на уроке?
— Сколько лучей можно провести через одну точку?
-Сегодня на уроке мне помогали…..
VIII. Домашнее задание.
Луч в математике — определение, форма и свойства
Геометрия занимается изучением разных фигур и их свойств. К ним относятся квадрат, треугольник, круг, овал, цилиндр. Луч в математике — это такая прямая, у которой нет конца. Поэтому она считается бесконечной. С данным понятием впервые сталкиваются ученики начальной школы. Более подробно материал изучается в 5 классе. Для решения задач по заданной тематике изучаются плоскость, отрезок, биссектриса.
Трактовка понятий
Впервые термин «луч» использовал в 1833 году швейцарский учёный Якоб Штейнер. Для его определения потребуется на плоскости поставить точку. Из неё должна исходить часть прямой, которая состоит из множества точек, расположенных по одну сторону от первоначальной. Само понятие «точка» считается абстрактным объектом, который не имеет высоты, радиуса, длины, сторон, угла. В задачах важно её местоположение на плоскости либо полуплоскости.
На чертеже она обозначается заглавной латинской буквой. Чтобы различить несколько точек, на рисунке используется несколько букв. Можно вводить числовое обозначение. В отличие от луча, отрезок считается частью прямой, ограниченной двумя точками на концах. Множество точек образует линию, у которой нет толщины и ширины. На плоскости можно начертить следующие её виды:
Линии пересекаются, если имеют одну общую точку. Чтобы они были перпендикулярны друг другу, между ними должен образовываться угол в 90 градусов. При параллельности части прямой не могут скрещиваться.
К особым формам луча относится ломаная. Она состоит из последовательно соединенных отрезков (звенья) под углом, отличным от 180°. Смежные звенья находятся на разных прямых.
У ломаной есть вершины. Они могут обозначаться с помощью латинских заглавных букв. Их нельзя править на маленькие. Сама вершина считается точкой, откуда начинается одна ломаная и заканчивается другая. Основным примером замкнутой линии является многоугольник. Его стороны представлены в виде звеньев.
Описание лучей
В геометрических задачах встречаются дополнительные лучи. Чтобы их начертить, потребуется отобразить на плоскости прямую, разделённую точкой на две полупрямые. Каждая часть является дополнительной относительно другой. Свойства лучей:
Дополнительные лучи могут дополнять друг друга до прямой. Отдельно рассматриваются совпадающие лучи. Если их наложить друг на друга, они совпадут. Для них характерна равная длина.
Чтобы отметить лучи на рисунке, используются порядковые номера.
Незамкнутый открытый луч состоит из точек, находящихся по одну сторону относительно проведённой линии. Для его обозначения используется строчная латинская буква либо две заглавные. Одна точка является началом, а вторая размещается на самом луче. В основе такой фигуры находятся полупрямые. Если в условиях задачи дана линия, формула выглядит следующим образом: (АB). Отрезок записывается в квадратных скобках.
Принципы классификации
Так как луч является частью прямой, поэтому через любую его точку проводится множество прямых, но только через две несовпадающие проходит одна прямая. Луч можно изобразить в нескольких вариантах: пересечение, скрещивание и параллельность.
Чтобы задать луч на плоскости, используется линейное уравнение. Фигуры называются разными способами и с помощью знаков. Можно провести полупрямую «О». Её начальная точка считается исходной и другой не существует. Другой способ записи — использование нескольких букв в середине либо в иных частях линии. Если в задаче дана прямая, её можно обозначить двумя буквами, размещёнными в разных её частях, к примеру, (АB).
Третий метод обозначения: точка «О» находится с некоторым отступом от начала. Центральную часть можно назвать буквой К. В таком случае весь луч будет называться ОК. Если нужно начертить продолжение к прямой, понадобится отметить на чертеже линию и точку, которая будет считаться производной. С помощью последней фигуры делится первая на 2 линии, которые не пересекаются между собой. Чтобы обозначить продолжение, рисуется линия карандашом.
Она будет иметь общее начало с основополагающей, но не будет совпадать с ней. Из т. О проводится прямая, не располагающаяся на дополняющих, но имеющая с ними одно общее начало. На новом луче отмечается т. В. На продолжении лежит отрезок ОВ.
Неразвернутый угол является случаем луча. Если стороны первой фигуры представлены в виде дополнительных полупрямых одной прямой, тогда угол является развёрнутым. Его значение равняется 180 градусов. Если значение угла иное, тогда он неразвернутый.
Следует отличать геометрические лучи от световых.
В математике фигура представлена в виде линии, у которой нет ничего общего с энергией. Для световых лучей характерно несконцентрированное направление, дефракция (переломанный). Но при сильном потоке света наблюдается их чёткое направление.
Аксиомы и доказательства
Свойства лучей определяются аксиомами. Положение 1: на любом луче от начала можно отложить отрезок определённой длины, и только один.
Доказательство: если на линии от начала А отложить 2 равных отрезка АВ и АС, тогда точки С и В совпадут. В и А не лежат на прямой, а находятся с одной стороны от неё. Если отрезок АВ не пересекает эту прямую, тогда множество точек, лежащих с единой стороны от прямой, называется полуплоскостью. При доказательстве положения 1 следует ориентироваться на определение луча.
Аксиома: прямая разделяет плоскость на 2 полуплоскости. Следствие: если D и С находятся в различных полуплоскостях от прямой а, тогда отрезок DC пересекает а. Из этого вытекает теорема: A, B, O, C расположены на прямой а таким образом, что А и В находятся с одной стороны от т. О, т. С и В — с одной стороны от О. При этом А и С размещены с одной стороны от О.
Доказательство: нужно провести через О прямую b, которая отлична от а. Она будет разбивать плоскость на 2 полуплоскости. На одной из них находится т. В. Так как отрезки BC и AB не пересекают прямую b, поэтому точки А и С находятся в одной полуплоскости с В. Отрезок АС не пересекает b. На нём не находится т. О. От неё по одну сторону размещены т. А и С.
Предположение: если O, A, B, C принадлежат прямой а, при этом А находится между В и О, тогда А лежит между О и С. По одну сторону от О находятся три точки А, B и C.
Доказательство: так как по условию т. А находится между О и В, поэтому А и В лежат по одну сторону от О. По второму условию В и С лежат по эту же сторону от О. Исходя из теоремы 1, А, В и С лежат по одну сторону от т. О.
Теорема: если O, A, B, C принадлежат одной линии а, т. А лежит между В и О, а т. В между О и С, тогда В находится между А и С.
Доказательство: выдвигается предположение, что из условия теоремы заключение не следует. Точка В не находится между А и С. По свойству взаиморасположения A, B, C, точки А и С лежат по одну сторону от В. По предположению следует, что они лежат по одну сторону от О, либо A, C, O лежат по одну сторону от B. Это противоречит условию: О и С находятся по разные стороны от В, либо А и С размещены по иную сторону от В, в отличие от т. О.
Подобное противоречит условию принадлежности А отрезку ОВ. Такое противоречие показывает, что предположение о т. В, не лежащей между А и С, неверное. Следовательно, точка В находится между А и С, что доказывает теорему. При решении геометрических задач, связанных с плоскостью и фигурами на ней, учитываются основные теоремы, доказанные учеными за всю историю математики.