Лучистый венец яйцеклетки для чего

Лучистый венец яйцеклетки для чего

Клетки яйценосного холмика (cumulus oophorus), или кумулюсные, иногда называемые лучистым венцом (corona radiata), представляют собой специализированные гранулезные клетки, непосредственно примыкающие к ооциту. Кроме участия в созревании цитоплазмы ооцита, они играют важную роль в его развитии, в том числе обеспечении блокады мейотического деления и индукции овуляции. Термин «овуляция» употребляется здесь в широком смысле и включает лютеинизацию и разрыв фолликула, возобновление мейотического деления ооцита.

Важнейший этап ЛГ-индуцируемой овуляции — связанный с кумулюсными клетками рост яйценосного холмика. Пристеночные гранулезные клетки экспрессируют рецептор ЛГ, который делает их чувствительными к ЛГ и благодаря которому они начинают секретировать белки семейства ЭФР — амфирегулин, эпирегулин и бета-целлюлин. Считается, что последние через паракринные механизмы регуляции запускают рост яйценосного холмика.

В это время кумулюсные клетки проникают во внеклеточный матрикс, содержащий гиалуроновую кислоту, ФНО-стимулируемый ген 6 (TSG6) и сывороточный интер-а-ингибитор — вещества, необходимые для разрыва фолликула.

Экспрессия яйценосным холмиком белка Tsg6 и некоторых других белков, участвующих в его росте, регулируется простагландином Е2 (ПГЕ2) через рецептор ЕР2. В подтверждение важной роли ПГЕ2 в росте куму-люса и овуляции показано, что мыши с дефицитом ЕР2 или циклоксигеназы-2 (Сох-2), являющейся лимитирующим ферментом для ПГЕ2, оказались бесплодными из-за имеющихся нарушений овуляции.

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Коннексин и щелевые контакты фолликула

Кумулюсные клетки осуществляют многие свои функции за счет межклеточных взаимодействий через щелевые контакты между собой и с оволеммой. Щелевые контакты — межклеточные каналы, формируемые белками из семейства коннексинов и предназначенные для диффузии Сахаров, аминокислот, предшественников липидов, нуклеотидов, метаболитов и сигнальных молекул. У всех представителей этого семейства имеются протеиновые домены: четыре трансмембрапных домена, две внеклеточных петли, цитоплазматическая петля и цитоплазматические N- и С-концевые последовательности.

У мышей имеется по меньшей мере 17 коннексинов, уникальная последовательность, длина цитоплазматических петель и С-терминальпых последовательностей которых, равно как и гетеро-/гомодимерное комбинирование, обеспечивают их функциональное разнообразие.

У мышей коннексины (Сх) 32, 37, 43, 45 и 57 экспрессируются кумулюсно-ооцитарным комплексом и обнаруживаются там между кумулюсными клетками, на чрезоболочечных выпячиваях кумулюсных клеток, обеспечивающих их связь с zp, на микроворсинках либо плазматической мембране ооцита.

Важнейшая роль щелевых контактов в оогенезе продемонстрирована на примере дефицита Сх37, приводящего у мышей к стерильности. Сх37 синтезируется как ооцитом, так и гранулезными клетками, но он, возможно, является единственным представителем семейства коннексинов в кумулюсно-ооцитарных щелевых контактах, который синтезируется ооцитом. В отсутствие Сх37 развитие фолликулов останавливается на переходе из преантральной в антральную стадию, в результате большинство фолликулов остается на первичной стадии и обнаруживают лишь несколько мелких антральных фолликулов. Более того, овуляция не происходит, несмотря на формирование многочисленных желтых тел.

Подобно этому, эксперименты in vitro показали, что Сх43, который также экспрессируется и гранулезными клетками, необходим для фолликулогенеза на стадиях вторичного фолликула и далее. Следует подчеркнуть, что ооциты мышей в экспериментальных моделях (дефицит Сх37 или Сх43) неспособны к мейозу, что может свидетельствовать о необходимости взаимодействия между кумулюсными клетками для достижения ооцитом мейотической компетентности.

Описанные коннексин-дефицитные экспериментальные модели демонстрируют важнейшую роль щелевых контактов в фолликулогенезе, но не объясняют значения клеток кумулюса в регуляции мейоза в ооците. Известны многочисленные модели и гипотезы, объясняющие, каким образом и в какой степени кумулюсные клетки обеспечивают повышение концентрации внутриклеточного цАМФ, необходимое для сохранения задержки мейоза даже после достижения ооцитом мейотической компетентности. И хотя полностью картина еще неясна, несколько ключевых факторов все же удалось выявить.

Источник

Центр ЭКО в Курске

Мы диагностируем и лечим все формы бесплодия как у женщин, так и у мужчин. Мы используем самые современные медицинские технологии, чтобы осуществить ваше желание стать родителями. Для нас нет ничего невозможного! В клинике «Центр ЭКО» вы получите не только грамотно подобранное лечение, но и психологическую поддержку, и комфортные условия.

Почему пациенты выбирают «Центр ЭКО»?

В клинике «Центр ЭКО» в распоряжении врачей находится самое современное оборудование для проведения наиболее точной диагностики и лечения пациентов. За счет этого клиника обеспечивает высокую эффективность протоколов ЭКО. Специалисты клиники «Центр ЭКО» проведут грамотную консультацию, назначат все необходимые анализы и обследования, чтобы подобрать каждой паре самый оптимальный курс лечения. Клиника «Центр ЭКО» проводит лечение пациентов в рамках программ ЭКО по ОМС.

В нашей клинике ведут прием высококвалифицированные специалисты, постоянно повышающие свою квалификацию и желающие помочь каждому пациенту. Любая семья, обратившаяся к нам в клинику, получает шанс стать счастливыми родителями. Записаться на консультацию в клинику можно, заполнив форму на сайте или позвонив нам по телефону.

Популярные программы ЭКО:

Наша клиника является одной из первых частных клиник России, участвующих в программе государственного финансирования

ЭКО в естественном цикле считается наиболее щадящим способом лечения бесплодия из всех методов вспомогательных репродуктивных технологий.

Источник

Полезное

Яйцеклетка

Успешное зачатие возможно только при участии двух полноценных половых клеток – мужской (сперматозоида) и женской (яйцеклетки). Вклад каждой из них в формировании нового организма равноценен – 50/50. Но было время, когда вопрос о роли отца и матери в этом деле был спорным. Аристотель полагал, что женщина лишь предоставляет место для развития эмбриона, а весь материал ему достаётся от отца. Такая точка зрения доминировала довольно долго. Но вот настало время, когда стало ясно: все самки млекопитающих производят яйцеклетки. Даже бытовало утверждение: «все от яйца!» (лат. Ex ovo omnia). Его приписывают английскому медику и учёному Уильяму Гарвею (1578-1657 гг.). И только в начале XIX века было установлено, что сперматозоид и яйцеклетка одинаково необходимы для формирования будущего организма.

Сегодня процесс оплодотворения и его участники – половые клетки, довольно подробно изучены. Досье на яйцеклетку представляем в данной публикации.

Итак, её имя: яйцеклетка, ооцит (овоцит). Слово имеет греческие корни: Ōón — яйцо, Kýtos — клетка
Термин «яйцеклетка» употребляется, когда речь идёт о женской половой клетке в общем.
Термин «ооцит» применяется для обозначения разных стадий, которые проходит яйцеклетка при своём образовании.

Функция: яйцеклетки служат продолжению рода. Мега важная миссия!

Продолжительность жизни
В яичниках, в «домашних условиях», яйцеклетка живёт около 50 лет. Настоящая долгожительница! Но при этом она стареет вместе с организмом. Чем старше женщина, тем яйцеклеток у неё меньше, а их качество хуже. Этим объясняется, почему с годами зачать ребёнка становится всё труднее. Даже при ЭКО яичники работают порой слабо. Даже под воздействием препаратов достаточное количество яйцеклеток не образуется. Они не доходят до нужной стадии зрелости и непригодны для оплодотворения. «Пожилые» яйцеклетки могут также стать виной генетических нарушений плода, что является основной причиной невынашивания беременности или рождения ребёнка с генетическим заболеванием.

После выхода из фолликула (овуляции) яйцеклетке остаётся жить всего лишь 24 часа. Если за это время она не встретится со сперматозоидом – беременность не наступит.

Форма тела яйцеклетки шарообразная. Это настоящие толстушки! Они совершенно неподвижны и наполнены запасами для будущего эмбриона.

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Состав:
Яйцеклетка состоит из цитоплазмы, ядра и мембраны.

Функции оболочки:
1-я – защита от механических повреждений
2-я – защита от проникновения лишних сперматозоидов. В оплодотворении должен принять участие только один!
3-я – помощь при имплантации, когда эмбрион прикрепляется к внутренней поверхности матки – эндометрию.

Ядро яйцеклетки содержит:
— белки, которые могут обеспечить деление и развитие новой жизни
— генетический материал, в котором заложена вся информация о будущем организме

Количество хромосом: 23 (гаплоидный набор). Из них 22 несут наследственную информацию. Одна отвечает за пол будущего ребёнка – это половая хромосома X.

Около ядра яйцеклетки располагается полярное тельце – это маленькая клеточка, которая образуется вместе с яйцеклеткой в результате мейоза. В её протоплазме содержится РНК и питательные вещества, которые необходимы на стадии дробления после оплодотворения.

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

На вес золота
Каждая яйцеклетка бесценна, ведь восполнить овариальный резерв нельзя, как и улучшить качество стареющих ооцитов. Есть только один способ, позволяющий сохранить здоровые молодые яйцеклетки – замораживание или криоконсервация. В случае яйцеклеток применяется наиболее прогрессивная технология криоконсервации биоматериала – витрификация

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Взаимодействию половых клеток способствуют вещества – гамоны, которые выделяет яйцеклетка. Ими она влечёт к себе сперматозоидов, стимулирует их двигательную активность, вызывает склеивание и обездвиживание тех, что оказались не у дел.

За пределами нормы
Бывает, что фолликул созревает, разрывается, а яйцеклетки в нём нет. Такое явление носит название «синдром пустого фолликула».

Случается, что яйцеклетка образуется и даже начинает созревать, но так и не выходит из фолликула. Множество фолликулов с недозрелыми ооцитами превращаются в кисты. В этом случае говорят о заболевании под названием «синдром поликистозных яичников» (СПКЯ, поликистоз). Патология развивается на фоне гормональной дисфункции и часто приводит к бесплодию.

Редко, но встречается и такое: созревает одновременно две или три яйцеклетки, все они попадают в маточную трубу и оплодотворяются. В таких случаях рождаются двойняшки или тройняшки.

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Если оплодотворение не произойдёт, верхний слой эндометрия, предназначенный для принятия эмбриона, отторгнется и выйдет с кровью во время месячных. Цикл начнётся заново.

Процесс созревания яйцеклетки, овуляции, оплодотворения, имплантации и развития беременности находится под контролем эндокринной системы. Гормональная дисфункция обычно приводит к нарушению цикла и развитию патологических состояний, которые без должной коррекции рано или поздно приводят к бесплодию.

Лучистый венец яйцеклетки для чего. Смотреть фото Лучистый венец яйцеклетки для чего. Смотреть картинку Лучистый венец яйцеклетки для чего. Картинка про Лучистый венец яйцеклетки для чего. Фото Лучистый венец яйцеклетки для чего

Одна из наиболее тяжёлых форм женского бесплодия – отсутствие яйцеклеток, пригодных к оплодотворению. Бывают случаи, когда их может не быть совсем (удаление яичника, врождённая аномалия развития органа и пр.). В такой ситуации беременность возможна посредством ЭКО с донорской яйцеклеткой

Стать донором яйцеклеток может женщина, отвечающая определённым требованиям. Донорство половых клеток является абсолютно легальной процедурой на территории РФ.

Источник

Яйцеклетка

Ооцит (также овоцит, от греч. Ōón — яйцо, греч. Kýtosклетка), яйцеклетка — большая неподвижная женская половая клетка (гамета) оогамных видов. Сливаясь со сперматозоидом, яйцеклетка образует зиготу, из которой формируется новый организм.

Характерными особенностями яйцеклеток являются большие размеры (не только по сравнению со сперматозоидом, но и с другими клетками организма), а также неспособность активно двигаться.

Ооцит — это высокоспециализированная клетка: его строение, состав и оболочки направлены на оплодотворение и образование зиготы. Во время оплодотворения оболочки яйцеклетки приводят к тому, что только один из многих сперматозоидов попадает внутрь ооцита, а содержание яйцеклетки и накопленные питательные вещества в виде желтка формируют полярность будущего зародыша.

Формирование яйцеклетки проходит много стадий, мейотическое деление и созревание, на разных стадиях ооцит имеет свою характерную название, термин «яйцеклетка» употребляется начиная с первичного ооцита и к оплодотворению.

Не все виды могут размножаться половым путем (некоторые размножаются только бесполым), а также не все организмы, способные к размножению половым путем, образуют ооциты и сперматозоиды. Так, в изогамный видов (например, в пивных дрожжей) гаметы одинаковы по форме и подвижностью и в них не различают ооциты и сперматозоиды. Таким образом, только оогамных виды могут формировать яйцеклетки.

История открытия

Оплодотворение и развитие нового организма были темой для размышлений задолго до того, как человечество начало познавать процесс зарождения жизни с помощью научных методов. Было понятно, что новый организм формируется после полового акта, но вклад женского и мужского родительских организмов в течение истории человечества считался разным. Например, Гиппократ (V-IV вв. До н. Э.) Считал, что оба родителя вкладывают равноценные доли, которые формируют эмбрион в матке матери, тогда как Аристотель полагал, что мать только предоставляет место для развития эмбриона, тогда как весь материал зародыша идет от отца. Взгляд Аристотеля доминировал вплоть до XVII века н. е. Тогда большой вклад в развитие медицины, в частности, эмбриологии, сделали выдающиеся ученые Гарвей, Ян ван Горн (нидерл. Jan van Horne), Сваммердам, Николас Стено, Ренье де Грааф и Франческо Реди. Результатом их работы стала теория, что все самки в том числе и человека, производят яйцеклетки. Именно Уильяму Гарвею приписывают авторство известной фразы «все от яйца» (лат. Ex ovo omnia).

1677 Левенгук сконструировал микроскоп, с помощью которого изучал, в частности, мужскую сперму и впервые увидел сперматозоиды. Таким образом было установлено наличие как мужских, так и женских половых клеток, но роль каждой из них в образовании зародыша была предметом дискуссий примерно 200 лет. И только в начале XIX века Маттиас Шлейден и Шванн выяснили, что как сперматозоид, так и яйцеклетка одинаково необходимы для формирования зародыша. Этому утверждению способствовала установлена ​​под микроскопом наличие яйцеклетки млекопитающих, сделанная Карлом фон Бером. 1876 ​​Оскар Гертвиг ​​впервые наблюдал оплодотворения морских ежей и установил, что ядра сперматозоида и яйцеклетки сливаются во время оплодотворения. Эдуард ван Бенеден конце 19 века описал созревания яйца до стадии бластоцисты, а Иоганнес Соботта опубликовал детальную работу о создании ооцита, оплодотворение и деление мышиного эмбриона.

Строение

Строение яйцеклетки у разных организмов очень разная. Различия могут быть на уровне от классов к видовых особенностей. На строительство яйцеклетки значительно влияют характерные черты среды, где она будет ожидать оплодотворения, и стратегия размножения вида в целом. От этих факторов зависит размер яйцеклетки, строение оболочки, размещенные в цитоплазме различных факторов и тому подобное. Ниже приведены обобщенные особенности строения яйцеклетки с некоторыми конкретными примерами.

Ооцит во время оплодотворения предоставляет половину генетического материала зародыша, другую половину приносит сперматозоид. Но яйцеклетка содержит почти всю цитоплазму будущей зиготы — сперматозоид обеспечивает лишь ЦЕНТРОС или ее части. Поэтому состав ооцита и размещения в его цитоплазме различных РНК и белков имеют большое значение для эмбриогенеза.

Цитоплазма яйцеклетки, ооплазмы, содержит большое количество:

У некоторых видов размещения этих факторов четко определены и они занимают определенную часть ооплазмы

Ядро яйцеклетки у большинства животных диплоидное, завершение мейоза происходит после оплодотворения, однако у некоторых видов, таких как морские ежи, мейоз завершается к оплодотворению и формируется гаплоидны ядро ​​- пронуклеусов, тогда как в большинстве видов женский и мужской пронуклеусы формируются уже после оплодотворения.

Цитоплазму окружают несколько оболочек яйцеклетки.

Оболочки яйцеклетки

Кортикальный слой

Кортикальный слой не является отдельной оболочкой, а является структурой внутри ооплазмы яйцеклетки. Он состоит из большого количества кортикальных гранул, прилегающих к плазмалеммы. Когда сперматозоид попадает в яйцеклетку, содержание кортикальных гранул секретируется в перивителиновий пространство, разделяющее яйцеклетку и вителинову оболочку (блестящую оболочку млекопитающих) и делает яйцеклетку непроницаемой для других сперматозоидов.

Вителинова оболочка

Вителинова оболочка, или первичная оболочка состоит из белков, которые помогают сперматозоида попасть к яйцеклетке и выполняют Видоспецифические барьерную функцию, обеспечивая попадание сперматозоида только соответствующего вида. Вителинова оболочка присуща беспозвоночным и позвоночным, однако у млекопитающих она специфическая и называется zona pellucida. Как у млекопитающих, так и у других организмов в белков вителиновои оболочки (zona pellucida) имеющийся домен ZP, с помощью которого происходит полимеризация белков и уплотнения оболочки.

Вителинова оболочка птиц

Вителинова оболочка птиц состоит из двух слоев: внутреннего и внешнего. Внутренний слой, перивителиновий, толщиной 1-3,5 мкм, сформированный фибриллярного белка. Этот слой отвечает за Видоспецифические соединение сперматозоидов и формируется за неделю до овуляции. У птиц после оплодотворения яйцеклетки в яйцевод образуется внешний слой, который блокирует полиспермии. В дальнейшем во время движения яйцевода вокруг зиготы формируется твердая оболочка — скорлупа.

Вителинова оболочка амфибий

Лучше всего изучены яйцеклетки следующих бесхвостых земноводных Xenopus laevis, Xenopus tropicalis, Discoglossus pictus и Bufo arenarum.

После овуляции яйцеклетка бесхвостых покрыта целомического оболочкой (англ. Coelomic envelope). В этом состоянии клетка не способна к слиянию со сперматозоидом, — такая способность приобретается только после преобразования целомического оболочки в вителинову. Уже в яйцеводе ооцит окружает желеобразный слой (англ. Jelly coat) толщиной 1 мм и вителинова оболочка толщиной 1 мкм. Вителинова оболочка состоит из фибриллярных белковых структур диаметром 12 и 19 нм, которые соединены между собой и формируют сетку. При оплодотворении для предотвращения полиспермии вителинова оболочка становится непроницаемой, так называемой оболочкой оплодотворения (англ. Fertilization envelope).

Яйцеклетки бесхвостых мало изучены. Известно, что у бесхвостых возможна полиспермия, потому что в них отсутствуют кортикальные гранулы, которые обычно уплотняют вителинову оболочку, поэтому в таких организмов не формируется оболочки оплодотворения.

Zona pellucida

Zona pellucida, блестящая оболочка, представляет собой специфическую внеклеточного оболочку ооцита, присущую млекопитающим. Толщина блестящей оболочки может изменяться от 1 до около 25 мкм в зависимости от вида животного. Zona pellucida состоит из гликопротеинов (ZP1-3 в мыши, у человека, свиньи и других видов имеется дополнительный ZP4), которые формируют сеть микрофибрилл, плотно упакованных у мембраны ооцита (оолемы) и более разреженно — на периферии. Ооциты, созревающие, а не сразу начинают секретировать ZP-гликопротеины. Когда ооцит переходит в своем развитии к диплотеновои стадии первого деления мейоза начинается образование zona pellucida. Белки блестящей оболочки мышей формируются исключительно ооцитом течение 3-4 недель.

Блестящая оболочка у мышей состоит из трех белков: ZP1 (623 аминокислотных остатка (АКЗ) длиной, 68,7 кДа), ZP2 (713 АКЗ, 80,2 КДА) и ZP3 (424 АКЗ, 46,3 КДА). Эти белки гликозилюються как по аминогруппе аспарагина так и по гидроксильной группе серин-треонина (N- и O-связанное гликозилирование, соответственно).

Через блестящую оболочку проходят так называемые трансзональни проекции от окружающих гранулёзных клеток, через которые к ооцита поступают белки и другие вещества.

Лучистый венец

Лучистый венец технически не является производным яйцеклетки, а состоит из отдельных клеток, которые называются кучевых (лат. Cumulus oophorus). Они окружают ооцит как в фолликуле, так и после овуляции. До овуляции кучевые клетки является ближайшим к ооцита слоем гранулёзных клеток, функция которых заключается в питании ооцита через специальные образования, трансзональни проекции, которые соединяют эти клетки.

Полярность яйцеклетки

Яйцеклетка — это достаточно большая клетка организма и размещения как питательных веществ, так и регуляторных элементов, мРНК и белков в ней может быть неравномерным.

У нематод Caenorhabditis elegans за один час после оплодотворения зигота приобретает очень поляризованного вида, начинает неравномерно делиться, в результате чего дочерние клетки имеют разный размер и разную дальнейшую судьбу. Но неоплодотворенная яйцеклетка никакой полярности не проявляет. Место попадания сперматозоида является начальной точкой образования полярности — в этом месте уменьшается концентрация актин-миозиновых комплекса и белка цитоскелета NMY-2 (англ. Nonmuscle myosin), формируя заднюю часть передне-задней оси зародыша. Однако неравномерное расположение белков PAR и атипичной протеинкиназы C (aPKC, англ. Atypical protein kinase C) также важны для формирования полярности — в случае их потери дочерние клетки становятся одинакового размера.

Неравномерном распределении в цитоплазме ооцита (ооплазме) плодовой мухи Drosophila melanogaster начинается к оплодотворению и зависит от размещения таких мРНК как bicoid и oskar вместе с действием PAR-белков. Поэтому, в отличие от круглых червей, неравномерность цитоплазмы зиготы у мух не зависит от точки попадания сперматозоида в яйцеклетку.

У млекопитающих такая определенность дальнейшей судьбы клеток зародыша отсутствует — еще на стадии восьми бластомер мышиного зародыша каждый из них может дать начало целому организму.

Виды яйцеклеток

Яйцеклетки разных организмов имеют неодинаковое количество желтка. Эта разница зависит от того, какой способ размножения присущ этим животным. Так, у животных, откладывают яйца (птицы, рептилии, рыбы) желтка много — весь он пойдет на нужды зародыша, и во время эмбриогенеза постепенно будет использован новым организмом. Такие яйцеклетки является полилецитальнимы.

Мезолецитальни яйцеклетки амфибий имеют среднее количество желтка, который концентрируется на одном полюсе, вегетативном. На противоположном полюсе, анимальном, содержится ядро ​​яйцеклетки и большинство органелл.

У млекопитающих формируется плацента, которая кормит зародыш, поэтому потребности в большом количестве запасных веществ нет, и яйцеклетки содержат мало желтка. Такие ооциты называются олиголецитальних. К олиголецитальних яйцеклеток также принадлежат яйцеклетки морского ежа, морской звезды, ланцетника.

Также яйцеклетки разделяют по распределению желтка. У млекопитающих, улиток, морских ежей желток распределен равномерно — они изолецитальни яйцеклетки. У насекомых центролецитальни ооциты — желток расположен посередине. Телолецитальни яйцеклетки присущи рыбам, птицам — в них лишь небольшое количество клетки свободная от желтка. В зависимости от типа яйцеклетки после оплодотворения дробления протекать по-разному.

Оогенез

Яйцеклетка формируется в результате процесса, который называется оогенез. В отличие от сперматогенеза (образования сперматозоидов), оогенез в большинстве видов приводит к образованию достаточно большой клетки, которая будет малоподвижным, но содержит большое количество цитоплазмы и запасных веществ. Для уменьшения количества хромосом яйцеклетка в процессе оогенеза проходит все стадии мейоза, однако выдающейся чертой мейотического деления ооцита является неравномерность дочерних клеток: одна из четырех образованных клеток содержит большинство материнской цитоплазмы — эта клетка и становится яйцеклеткой, тогда как остальные дочерних клеток (полярные тельца) цитоплазмы почти не содержат.

Оогенез лучше изучен у беспозвоночных, которые имеют ооциты больших размеров (морские ежи, морские звезды) и позвоночных, которым присуще внешнее оплодотворение (амфибии, рыбы). Оогенез млекопитающих изучено плохо, что связано как с небольшим количеством яйцеклеток, образующиеся при жизни животного, так и с техническими трудностями их изучения. Например, оогенез у морского ежа легко стимулировать инъекцией 0,5 M KCl и получить миллионы яйцеклеток, которые можно изучать в растворе соленой воды, тогда как с одной грызуна можно получить примерно 30 ооцитов, каждый из которых требует сложного питательной среды и определенных температурных условий.

В зависимости от способа размножения, оогенез у животного протекает по-разному. У животных, продуцируют большое количество ооцитов (рыбы или амфибии, в виде икры) стадии оогенеза могут повторяться в течение жизни. У животных, которые на протяжении жизни формируют сравнительно небольшое количество ооцитов (большинство млекопитающих, включая человека) оогенез происходит только один раз, без повторения стадий, и те первичные ооциты, что поспорили в эмбриональный период, в течение жизни постепенно созревают и овулирующих, а их Запасы обновляются.

Яйцеклетки начинают образовываться в эмбриональный период. На начальных стадиях развития гамет будущие ооциты не отличаются от будущих сперматозоидов. Такие клетки называются Примордиальная или первичными гоноциты (англ. Primordial germ cells, PCG).

Примордиальные клетки могут образовываться двумя путями:

Примордиальные гоноциты митотически делятся и мигрируют во время гаструляции к месту, где будет создан гонады. Примерно к середине эмбриогенеза у мышей и до 6 недели эмбриогенеза у человека формируются бипотенцийни гонады, которые могут развиться в мужские или женские половые органы. Половая дифференциация гонад зависит от наличия или отсутствия гена SRY (англ. Sex-determining region Y), который вызывает развитие гонад в семенники. Ген SRY закодированный в Y-хромосоме, которую может принести сперматозоид (во время оплодотворения). Если же сперматозоид несет X-хромосому, то из-за отсутствия гена SRY будут образованы яичники.

У человека оогенез производит около 7000000 предшественников ооцитов, оогоний, до 7 месяца эмбриогенеза. Но дальше большинство из них погибает запрограммированной клеточной гибелью и только небольшое их количество, 6-7%, начинает мейотическом делиться. Такие клетки называются первичными ооцитами. Первичные ооциты доходят до диплотеновои стадии мейотического деления (примерно середина кроссинговера) и на этой стадии наступает пауза. У млекопитающих уже после рождения, во время так называемого пубертатного периода (полового созревания) первичные ооциты продолжают мейотическое деление, становятся вторичными ооцитами, и начинают выходить один за другим в процессе овуляции. Но завершение мейоза у мышей и человека происходит уже после оплодотворения.

Начало пубертатного периода и последующие периоды овуляции, менструальный цикл, контролируются уровнем не только половых гормонов, таких как ФСГ, но и достаточностью питания, например, через гормон грелин.

У дрозофилы при оогенеза отделяется специализированная плазма зародыша (англ. Germ plasm), с которой уже после оплодотворения сформируются зачатки гонад, которые войдут в мейоз после вылупления зрелой особи.

Генетика оогенеза

Одной из главных задач формирования как мужских, так и женских половых клеток является достижение гаплоидного набора хромосом (n), который становится диплоидным (2n) после оплодотворения, когда две половые клетки, каждая из которых имеет n хромосом, сливаются. Но поведение половых хромосом во время оогенеза отличается от сперматогенеза. Первичная яйцеклетка имеет кариотип XX. В отличие от сперматогенеза, где хромосомы X и Y отделены в так называемые половые или XY-тельца, во время оогенеза обе X-хромосомы активные и только после оплодотворения, если сперматозоид принесет второй X-хромосому, одна из них будет инактивированная.

Хроматин ооцитов также имеет свои особенности. Оба вида гамет имеют нестандартные варианты гистонов, которые формируют нуклеосомы, на которые накручивается молекула ДНК. В то время как у сперматозоидов есть варианты гистонов H2A (макроH2A (mH2A), H2A.X и фосфорилированный γH2A.X) и H3 (H3.3), которые могут запаковать ДНК очень плотно, яйцеклетка имеет только один специфический гистона H1oo. Но интересной особенностью H1-гистонов является то, что он не формирует нуклеосому, а есть линкерных (соединительным), то есть объединяет нуклеосомы между собой, чтобы создать плотную хромосомную структуру. Роль варианта H1oo еще не до конца выяснена, но он высоко консервативным у животных. Также ооциты имеют H3.3 и mH2A течение мейоза.

Транскрипционных активность яйцеклетки

Репрессия транскрипции

Во время оогенеза прекурсоры гамет транскрипционно неактивные определенное время, пока они мигрируют к гонад. В этот период гоноциты должны быть защищены от воздействия, которое может привести к их дифференциации в клетки зародышевых листков. В это время активную роль играет реорганизация хроматина, а в червей и мух также происходит подавление активности РНК-полимеразы из фосфорилирования ее C-концевого домена киназы P-TEFb (англ. Positive transcription elongation factor b). Поддержка неактивной РНК-полимеразы происходит с помощью белка Nanos.

Экспрессия генов

У большинства животных (за исключением насекомых) яйцеклетка все же продуцирует определенные мРНК. С ее ДНК считываются гены, которые необходимы для метаболизма клетки и для проведения специфических для ооцоиту процессов. Также ооцит имеет накопить в своей цитоплазме РНК, которые будут необходимы эмбриона во время первых делений бластуляция, пока не будут активированы собственные гены зиготы. Так, в мыши во время оогенеза только яйцеклетка считывает мРНК гликопротеинов блестящей оболочки ZP1, ZP2, и ZP3 (англ. Zona pellucida glycoprotein 1-3).

Мейотическое разделение ооцита

Главной особенностью мейотического деления ооцита, в отличие от сперматозоида, большая асимметричность разделов и неодинакова судьба дочерних клеток. Мейоз яйцеклетки млекопитающих начинается в эмбриогенезе, когда организм самки еще не родился. Но мейотическое деление не происходит сразу с начала до конца — есть два периода покоя: длиннее и короче. До рождения мейоз проходит в стадии Диплотена 1 разделения и в таком виде ооцит находится много времени — от месяцев до лет в зависимости от вида млекопитающих — до половой зрелости. Тогда, после овуляции яйцеклетка завершает первый деление мейоза и останавливается на стадии G2 клеточного цикла.

Также особенность мейотического деления ооцитов первого порядка млекопитающих состоит в том, что суммарным выходом мейоза могут быть три клетки, а не четыре, как при делении сперматоцитов первого порядка. После первого раздела первого дочернее полярное тельце может потом не завершить разделение, в результате чего из одного первичного ооцита образуется одна яйцеклетка, первое полярное тельце и второе полярное тельце.

У некоторых видов саламандр и рыб (Poecilia formosa) генетический материал сперматозоида не участвует в оплодотворении, хотя мужская гамета нужна для стимуляции формирования зиготы. Такой вид размножения называется гиногенез. Диплоиднисть яйцеклетки достигается или мейотическом гиногенез — при повторном привлечении генетического материала второго полярного тельца, или митотическим гиногенез — нерасхождением материала после первого деления митозом.

Редукция центросомы

Центросомы в гаметах наблюдали уже 100 лет назад, однако поведение их в половых клетках поняла гораздо меньше, чем в соматических. В некоторых организмов наблюдается редукция центросом в гамет.

Расхождения хромосом при метотичного разделения в неполовых (соматических) клетках происходит благодаря образованию веретена деления — скопление микротрубочек и специальных белков, которые размещены на полюсах клетки, делится. В основе этой структуры лежит главный центр организации микротрубочек (ЦОМТ, англ. Major microtubule-organizing centre, MTOC) — центросома, состоящий из центриолей и дополнительных прицентриольних белков. Еще одной особенностью мейотического деления яйцеклетки является отсутствие канонической центросомы.

Организация веретена деления мышиного ооцита происходит благодаря скоплению нескольких ацентриольних центров организации микротрубочек (англ. Acentriolar microtubules-organizing centres, aMTOC). Такие аЦОМТ насыщенные белками γ-тубулин и pericentrin.

Переход от ацентросомного разделения к нормальной метотичного разделения со стандартной Центросома происходит не сразу после оплодотворения и наступает на стадии бластоцисты.

Стадии оогенеза

Название стадииОписание
Гоноциты или первичные половые клетки (PGC, англ. Primordial germ cells)Не дифференцированы на мужские или женские предшественники половых клеток. Мигрируют в первичных гонад (гонадного валике), в процессе чего делятся митотически. Там дифференцируются или на женские оогонии или на мужские сперматогоний.
ОогонийКлетки, находящиеся в гонадних валиках и делятся митотически. Интенсивность деления в них увеличивается, по сравнению с гоноциты при иммиграции
Ооцит первого порядка (или первичный ооцит)Клетка, которая вошла в мейоз и прошла в нем до Диплотена первого раздела (млекопитающие и мухи) или к диакинеза первого раздела (C. elegans). Обычно именно в этой стадии находятся половые клетки в гонадах млекопитающих большинство времени — мейоз начинается еще до рождения, а выход из паузы происходит сразу перед овуляцией. У человека ооцит первого порядка переходит к следующей фазе под действием ФСГ, завершает первый деление мейоза и формирует две дочерние клетки: ооцит второго порядке и полярное тельце с небольшим количеством цитоплазмы.
Ооцит второго порядка (или вторичный ооцит)Клетка, которая вышла из паузы первого деления мейоза, в связи с овуляцией (млекопитающие) или под действием мужских половых гормонов MSP (англ. Major sperm protein) у нематод (факторы, влияющие на продолжение мейоза у мух, не выяснены ). Мейоз продолжается до следующей паузы: метафаза 2 деления (млекопитающие), метафаза 1 разделения (мухи) или анафаза 1 разделения (нематоды). Ооцит второго порядка при переходе к следующей фазе завершает мейотическое деление и делится на две клетки: зрелую яйцеклетку и полярное тельце.
Зрелый ооцит или яйцеклеткаКлетка, которая завершает мейоз. У млекопитающих и нематод происходит во время оплодотворения сперматозоидом, тогда как у мух все эти стадии завершаются до овуляции, а выход из паузы во время метафазы 1 деления происходит благодаря воздействию давления и влажности. С одной первичного ооцита формируется одна яйцеклетка, в которую переходит почти вся ооплазмы, и полярные тельца (два или три, в зависимости от того, завершит разделение первой полярное тельце).

Оплодотворение

Высокодифференцированные половые клетки, которые настроены под одну функцию, а именно оплодотворения, должны при слиянии создать зиготу — тотипотентных клетку, которая даст основу всем видам клеток зародыша и с которой сформируется целый организм. Поэтому во время оплодотворения с яйцеклеткой, которая представляет собой большую часть объема будущей зиготы, происходит серия изменений.

Характерным свойством яйцеклетки является блокирование проницаемости оболочек после контакта с акросомой первого сперматозоида и его активация — переход из состояния покоя к развитию. Яйцеклетки определенных видов организмов могут быть также самодостаточными звеньями полового размножения (не требуют сперматозоидов для активации) — такое размножение называется партеногенезом.

Акросомная реакция

Для оплодотворения сперматозоид должен пройти слой гранулёзных клеток и блестящую оболочку яйцеклетки. Для этого на апикальной части сперматозоида формируется особая везикула — акросома, которая содержит вещества, способные расщепить zona pellucida и позволить попадание сперматозоида внутрь яйцеклетки. Акросомная реакция начинается при контакте акросомы с ZP3-белками блестящей оболочки и содержание акросомы высвобождается в Ca 2+ зависимые Экзоцитоз

Использование яйцеклеток в клинике и лабораторных исследованиях

Индукция плюрипотентности

В ходе онтогенеза клетки-предшественники делятся и дифференцируются в специализированные клетки. Способность одной клетки-предшественника дать зачаток клеткам разных зародышевых слоев и затем превратиться в специализированную клетку называется потентнистю. Оплодотворенная яйцеклетка, зигота — это тотипотентных клетка, которая дает зачаток всем клеткам организма. Во время эмбриогенеза определенные клетки делятся и дифференцируются в плюрипотентные стволовые клетки — такие, что при деленные дают зачаток многим различным клеткам, но в рамках различных зародышевых слоев (например, мезодермы). В ходе дальнейшей дифференциации клетки становятся унипотентнимы — способными к делению предшественниками только одного вида клеток. Большинство соматических клеток взрослого организма находятся в дифференцированной стадии и приспособлены для выполнения специальных функций.

Соматические клетки в лабораторных условиях могут быть перепрограммированы в плюрипотентные стволовые клетки. Эта процедура имеет очень широкое применение in vitro — от моделирования болезней к тестированию лекарств.

Одним из видов индукции плюрипотентности есть пересадки ядер соматических клеток. При такой процедуре ядро ​​яйцеклетки удаляется, а на замену подсаживается ядро ​​соматической клетки. Таким образом была клонирована овца Долли.

Митохондриальная ДНК

ДНК в клетке организма содержится не только в ядре. Митохондрии — специализированные органеллы, которые производят молекулы АТФ — имеют свою собственную ДНК (мтДНК). Во время оплодотворения в большинстве организмов (но не у всех) эмбрион получает митохондрии только от яйцеклетки и, соответственно, митохондриальную ДНК только от матери. Исключение составляют некоторые виды моллюсков. Этот результат обеспечивается с помощью двух процессов: автофагии митохондрий, которые оплодотворенная яйцеклетка получила от сперматозоида, и деградации родительской мтДНК при сперматогенеза.

Поэтому митохондриальная ДНК организма наследуется от матери (только самки передают мтДНК к следующему поколению). Этот факт используется в генетических анализах для построения генеалогических деревьев, установления эволюционного происхождения видов, и тому подобное.

Яйцеклетка растений

Растения способны к размножению вегетативным (бесполым) и генеративных путем, или половым — из сливом мужской и женской гамет. При размножении половым путем необходим переход растения из вегетативного состояния к генеративному.

Покрытосеменные

Образование цветка начинается процессом эвокация — физиологической, биохимической и генетической перестройки верхней части стебля (апекса) и происходит флоральный детерминация.

В пестику цветка в семенном зачатке содержится нуцелуса, покрытый специальным покровами — интегументом. В нуцелуса находиться археспориальна клетка с диплоидным набором хромосом, 2n. Археспориальна клетка делится мейотическом, образуя четыре макроспоры с гаплоидным набором хромосом, 1n. Из этих четырех клеток трех разрушаются и лишь одна макроспоры остается, делится уже митотическим путем трижды и образует зародышевый мешок (женский гаметофит), который состоит из семи клеток, которые содержат в общем восемь ядер, поскольку одна из клеток имеет два ядра. Каждое ядро ​​содержит гаплоидинй набор хромосом, 1n.

Во время образования зародышевого мешке после первого митотического деления макроспоры, две дочерние клетки расходятся к разным полюсам гаметофита. Таким образом гаметофит приобретает свою полярности — разницы в структуре от одного края к другому. На полюсе, где находится микропиле («A» на рисунке) содержит яйцеклетку, (на рисунке желтая, обозначенная «C») и две вспомогательные клетки синергиды («D» на рисунке). Другой полюс формирует базальную часть зачатке, халазу («B» на рисунке). Там три гаплоидных ядра формируют три клетки-антиподы («F» на рисунке). В зародышевом мешке по центру содержится клетка вторично диплоидная — эндосперм («E»).

Синергиды выполняют важную роль при оплодотворении. Их клеточная стенка формирует большое количество впьячувань внутрь цитоплазмы клетки, увеличивая площадь поверхности плазматической мембраны, нитевидные структурой (англ. Filiform apparatus). Вместе с развитым эндоплазматическим Ретикуло это позволяет синергиды выделять хемотропни вещества для прорастания пыльцевых зерен до яйцеклетки и эндосперма, где один из спермиев оплодотворяет яйцеклетку, другой, с диплоидным ядром центральной клетки, формирует эндосперм. Это явление было открыто в Киеве в 1898 году Сергеем Навашиным и получило название двойного оплодотворения. Во время прорастания пыльцевых зерен клетки-синергиды разрушаются.

Яйцеклетка покрытосеменных растений поляризована. Вакуоль сравнительно больших размеров размещается ближе к микропиле, в то время, как ядро ​​клетки расположены ближе к основанию.

Яйцеклетки других организмов

Многие организмы могут размножаться как поло, так и бесполым (высшие растения, водоросли). Причем во время полового размножения гаметы могут отличаться или не отличаться по размеру, морфологии и подвижностью. В зависимости от этого различают:

Говорить о яйцеклетку имеет смысл только в случае гетерогамии.

Водоросли

Водоросли — это очень разнородная нетаксономична группа организмов, которым присуще как бесполое, так и половое размножение различных типов.

Зеленые водоросли

Могут размножаться изогамный или анизогамно.

Особи рода Eudorina имеют яйцеклетки с двумя жгутиками. Колонии Volvox имеют специализированные клетки, способные продуцировать гаметы — яйцеклетки и мужские гаметы. При этом большинство других клеток колонии способна лишь к вегетативного размножения. После слияния гамет формируется зигоспора. Представители рода Oedogonium способны к половому размножению и производят оогонии с одной большой яйцеклеткой без жгутиков, которую оплодотворяет мужская гамета с большим количеством жгутиков. Организмы рода Oedogonium имеют как представителей, которые могут продуцировать мужские и женские половые клетки в одном гаметофитом, так и представителей, которые производят только один вид гамет.

Красные водоросли

Красным водорослям присуще бесполое или половое размножение оогамия. Гаметофиты производят женские и мужские гаметангии. Женская гаметангий называется карпогона, он формируется на специальные выросты (англ. Carpogonial branche). Яйцеклетка большая и не имеет жгутиков. Мужские половые клетки сперматии также не жгутиков, поэтому оплодотворение происходит благодаря переносу мужских гамет течением воды.

Бурые водоросли

Имеют как изогамный, так и гетерогамни гаметы. При оогамии яйцеклетки не имеют жгутика, а мужские гаметы — нет.

Грибы

Грибы, как и водоросли, является большой разнообразной группой организмов, которым присуще как половое, так и бесполое размножение.

Оомицеты

Оомицеты присуще половое размножение с гетерогаметного половыми клетками. Яйцеклетка называется оосфера — ее производит оогоний. Мужская половая клетка не активно подвижная — она ​​формируется в антеридии и попадает в оосферы благодаря процессу, который называется копуляция гаметангии — гаметангии разных полов тесно контактируют друг с другом и ядро ​​с антеридиев попадает в оосферы. Кариотип гамет гаплоидный, 1n, который формируется в результате мейоза. После оплодотворения формируется зигота — ооспора.

Видео по теме

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *