Луноход что это такое для детей
Полная автономность, год без заправки, саморемонтирующаяся подвеска для любого ландшафта и климат-контроль, стабилизирующий перепады до 100 °С. Автомобиль будущего? Отнюдь. Такой транспорт придуман еще в 1969 году. Первый же экземпляр трижды перекрыл гарантийный пробег без единого отказа.
Если исходить из того, что братьев по разуму у нас нет, этот транспорт можно считать самым надежным во всей Вселенной. Американцы не в счет: они дважды ремонтировали свой «Лунный ровер» прямо на Луне. Наш «Луноход», сломайся он в «рейсе», ремонтировать было бы некому – экипаж находился от него за 400 тыс. километров…
Шасси для беспилотника
В освоении иных планет мы, как это бывало не раз, тоже пошли своим путем. Вместо человека СССР решил послать на соседнюю планету робота-исследователя.
Фото: Андрей Сербин
Чтобы он смог делать всё то же, что и живой космонавт, ему было необходимо транспортное средство. Ключевой проблемой было шасси, и решить ее поручили военному НИИ из Ленинграда, проектировавшему ходовую часть. Военные конструкторы остановились на старом добром колесе, отвергнув гусеничный ход, шагающий, прыгающий, перекатывающийся… Определяющих требований к шасси «Лунохода» было несколько.
Прежде всего движитель должен быть настолько универсальным, чтобы свести к минимуму вероятность «засадить» планетоход – подтолкнуть-то его будет некому! Да и с «раскачкой», как покажет жизнь, у космических роботов проблемы. Кроме того, профиль протекторной части должен был препятствовать боковому сползанию транспортного средства при движении по склонам. Во-вторых, важна надежность, а что может быть проще колеса? Тут, кстати, сразу и в-третьих, по причине простоты колесо как таковое – предельно легкий узел. Наконец, оно – один из самых эффективных движителей и требует наименьших энергозатрат. Применение шасси с колесами дает возможность варьировать их количество, а помимо снижения давления на грунт, это еще и возможность повысить живучесть транспортного средства – за счет исключения из игры отказавших колес.
Колесо заново
Правда, колесо пришлось существенно дорабатывать, и прежде всего потому, что в конце 1960-х человек очень приблизительно знал, что представляет собой лунный грунт. Комбинация камней всех калибров с рыхлыми породами непредсказуемой плотности требовала колеса с противоречивыми свойствами. И военные такое сделали. Три тонких титановых обода легко катились по твердой поверхности, натянутая между ними сетка вступала в действие на сыпучем грунте, когда обода начинали проваливаться. Приваренные поверх всего уголки-грунтозацепы помогали выгребать на рыхлой поверхности под нагрузкой. Как потом оказалось, они были востребованы чаще, чем хотелось бы. Легкие спицы вместо дисков обеспечивали необходимую прочность и упругость на случай жесткого контакта колеса с камнями.
Окончательный вариант колес рождался в результате расчетов и многочисленных испытаний. Опытные образцы катали на трех полигонах с разными типами грунтов и даже в отсеке самолета, имитирующего лунную гравитацию, которая составляет 1/6 часть земной. Например, много времени занял подбор величины ячейки сетки, натянутой на обод.
В тонкую ступицу колес встроили электродвигатель постоянного тока с редуктором и пиропатроном. Последний подрывался дистанционно в случае аварийного заклинивания привода, и колесо, разобщенное таким образом с осью редуктора, превращалось из ведущего в ведомое, то есть просто катилось по поверхности. Таким образом можно было без непосредственного участия человека «отремонтировать» привод пяти колес из восьми имеющихся, и аппарат мог продолжать выполнение задачи с тремя оставшимися ведущими!
Нервы длиной 400 тыс. км
Самым сложным пунктом в лунном проекте СССР было управление «Луноходом». Оно было дистанционным, и более дистанционное найти было трудно: расстояние от Моря Дождей на Луне, куда высадился наш космический робот, до Центра дальней космической связи в Крыму, где располагался его экипаж, превышало 400 000 километров.
Командный радиосигнал преодолевал этот путь за 2,5 секунды, то есть с такой задержкой аппарат реагировал на команды водителя. Но это была не главная проблема. Основная трудность была в скорости обновления картинки на мониторе перед оператором. Передача изображения с камер «Лунохода» на Землю только называлось телевизионной, на самом деле водитель видел перед собой, мягко говоря, слайд-шоу: кадр сменялся не 25 раз в секунду, а один раз в 3–20 секунд (в зависимости от рельефа местности)! Ничего не поделаешь – обеспечить более быструю передачу данных каналы связи и счетно-решающие машины того времени не могли. Таким образом, после обнаружения препятствия машина продолжала двигаться еще не менее 8 секунд! Именно поэтому водители никогда не «гнали» быстрее 2 км/ч.
Усугубляли проблему особенности лунного освещения – настолько резкого и контрастного, что дорожная ситуация «за лобовым стеклом» выглядела для оператора как набор черных и белых пятен. В некоторые дни, когда солнце стояло в зените, «ехать» было вообще нельзя. Поэтому в помощь глазам водителя аппарат присылал ему данные с дополнительных датчиков: крена, дифферента, нагрузки и пробуксовки колес. Анализируя их, экипаж быстрее понимал, что происходит с его машиной: накренилась на каменной гряде, спускается в кратер, карабкается из него с 90-процентной пробуксовкой. Работа экипажа была столь напряженной, что больше двух часов «за рулем» он не выдерживал.
Что внутри?
Кстати, об экипаже. Он состоял из пяти человек. Кроме водителя, сидевшего на рычагах (поворачивал «Луноход» по-танковому, с подтормаживанием колес), были еще штурман, бортинженер, оператор остронаправленной антенны и командир экипажа. Как бы там ни было, даже при прочих благоприятных условиях поместиться в своей машине все эти люди не могли бы, поскольку ее округлый корпус (макс. диаметр 2 150 мм) полностью занят научной аппаратурой и системами, отвечающими за работу шасси. Маршевые электродвигатели планетохода питались от серебряно-кадмиевых аккумуляторных батарей, которые получали зарядку от солнечных панелей, размещенных на верхней откидывающейся крышке. Ночью (1 лунная ночь, как и лунный день, длится почти 14 земных суток) крышка закрывалась, чтобы беречь тепло в корпусе, и аппарат на это время замирал в «анабиозе». Причина не в отсутствии мощных фар, а в отсутствии возможности подзаряжать батареи без солнца.
Эволюция и подвиги луноходов
Общее название для группы самоходных исследовательских аппаратов – «Луноход» – распространяется на все автономные транспортные средства, сконструированные для передвижения по поверхности Луны.
Первые луноходы, реализованные в рамках Советской Лунно-посадочной программы пилотируемых полетов (1969–1977 г), должны были обеспечить астронавтам мощную техническую поддержку. Луноходы предназначались для предварительного обследования предполагаемого места посадки жилого модуля, автоматического сбора данных (фото, видео, замеры, пробы грунта); могли использоваться как личный транспорт (оснащались ручным управлением) и как передвижной посадочный радиомаяк.
Первый Луноход: сделано в СССР
Технически, первый луноход, который должен был опуститься на Лунную поверхность в 1969 г, не выполнил задачу из-за аварии ракеты-носителя (головной обтекатель грузового отсека развалился из-за дефицита прочности еще на этапе разгона).
Аппарату был присвоен «испытательный» статус и номер «ноль», а «первенцами» проекта – стали фото с Советского «Лунохода-1» запущенного 10 ноября 1970 года.
Проектирование
Работа над аппаратами для освоения Луны была начата в 1966 году и шла раздельно: в КБ завода имени Лавочкина (руководитель Бабакин Г. Н.) рассчитывалась и собиралась корпусная часть – гермокорпус, аккумуляторы для солнечных батарей, сами батареи, антенны, камеры, манипуляторы.
Работа над шасси – выполнялась во ВНИИтрансмаш (КБ, проектировавшем танки и военную технику СССР) под руководством А. Л. Кемурджиана.
Разработка посадочных модулей и самого лунохода сильно затруднялась отсутствием достоверных данных о составе, механических свойствах грунта; уровне радиации на поверхности спутника. Окончательная конструкция лунохода была утверждена только через полгода после получения информации с первой (из тринадцати выведенных на орбиту Луны) успешно прилунившейся автоматической станции («Луна-9»).
Обкатка
Управлялся Луноход дистанционно, через сеть приемно-передающих (ретрансляционных) станций (НИП-10, НИП-16). Данные с двух телекамер Лунохода поступали на радиотелескоп ТНА-400, расположенный в закрытом центре космической связи Симферополь-28 (ВЧ 14109). С него же передавались ответные команды из координационно-вычислительного центра. Данный НИП обеспечивал связь с зондами серии «Луна» и космическими кораблями СССР «Восток».
На территории этой военной части в сентябре 1968 года был организован полигон для обкатки первых планетоходов: котлован площадью 70х120 м, наполненный битым ракушечником. Рельеф сооружения имитировал механические свойства поверхностного слоя лунного грунта (реголита).
Космическая связь тех лет не могла обеспечить качественного гладкого телеизображения. Кроме того, радиосигнал с Луны доходил с задержкой, поэтому решено было сократить частоту передаваемых кадров с обычных 25 в секунду до одного фото в 3–20 секунд.
Движением Лунохода руководили посменно две команды из 5 человек. Все 11 специалистов (10+1 запасной) были не водителями, а молодыми пилотами и «ракетчиками».
Луноход 1
Автоматическая посадочная ступень «Луна-17» опустилась на лунный грунт через неделю после старта ракеты-носителя – 17.11.1970 г. Первыми фото и телеизображениями переданными с «Лунохода-1» стали виды аппарели платформы и места посадки в районе Моря Дождей (координаты 38° 18′ 54.72″ N, 35° 0′ 28.8″ W).
Технические характеристики:
Диаметр/ширина колес
510 мм/200 мм
Емкость
200 А/ч
Источник тепла
Капсулы Po 210 (Полоний)
Кузовом (платформой для шасси и бортовой аппаратуры) служил герметичный литой корпус из магниевого сплава с изолирующим слоем толщиной 20 см. Куполообразная крышка открывалась «днем» для зарядки солнечных батарей, а «ночью» – закрывалась для защиты оборудования от холода. На большинстве известных фото Лунохода она откинута.
Самоходная платформа была оснащена независимой торсионной подвеской. Привод колес – электрический (полный), по схеме мотор-колесо. Классические «шины» колес отсутствовали – их роль играли сетчатые обода, снабженные пластинами (протектором) из титанового сплава. На Земле мотор-колеса обеспечивали Луноходу максимальную скорость около 10 км/ч, но мощность была искусственно снижена вполовину, чтобы аппарат не перевернулся из-за низкой силы тяжести (в 6 раз меньше земной).
По бортам лунохода были установлены 6 панорамных телекамер (4 телефотометра и 2 камеры, одна из которых была резервной) и три антенны. Камеры управлялись раздельно, двумя независимыми системами.
Первый лунный «исследователь» выглядел несерьезно и комично (блестящая «кастрюлька» с круглой крышкой, едущая на восьми ажурных колесиках)
Но несмотря на несерьезный вид, первый луноход провел огромную и серьезную научную работу:
Луноход 2
Второй планетоход серии конструктивно практически не отличался от своего предшественника (вес был чуть ниже – 836 кг) и предназначался для дальнейшего изучения особенностей строения и химического состава поверхности (реголита) лунных «морей» и «материков».
Посадка АМС «Луна-25» состоялась 15 января 1973 года. Приборы системы дистанционного управления борта «Луноход-2» оказались повреждены, но благодаря дополнительной выносной камере, водителям, все же, удалось успешно ориентироваться.
Запуск и эксплуатация Лунохода-2 прошли штатно. В ходе экспедиции были подтверждены ранее полученные данные, измерено напряжение магнитного поля, альбедо грунта, установлена разница между яркостью «дневного» и «сумеречного» лунного неба. С января 1973 года, от борта Лунохода-2 было получено 1500 фото.
Официально проект был остановлен 4 июня 1973 года, когда из-за попадания лунной пыли под крышку солнечной панели, температура внутри герметичного отсека поднялась выше расчетной и оборудование перегрелось.
В 1993 году оставшийся в космосе луноход был продан с аукциона Сотбис за 68 500 тыс. долларов.
Луноход 3
Созданный на базе предыдущих платформ, самоходный аппарат должен был нести на себе самые перспективные разработки, включая поворотную стереоскопическую телекамеру, упакованную в гермоблок на отдельном штативе.
Однако, к моменту его постройки в 1977 году, программа «Луна-25» была свернута и запуск лунохода не состоялся.
Опыт, полученный при создании аппарата для научных исследований Луны, неожиданно пригодился для проектирования роботизированных комплексов, действующих в опасных для человека условиях на Земле – на базе третьего аппарата из «лунной» серии был построен робот, участвовавший в ликвидации аварии на Чернобыльской АЭС.
Сам же прототип остался в стенах «родного» НПО, став «полноразмерной действующей моделью лунохода» на выставочном стенде.
Электромобили на Луне: Роверы проекта Аполлон
При высадке американских космонавтов на Луну (проект «Аполлон-15») и в двух последующих экспедициях (1971–1972 г) использовались «лунные автомобили» (роверы). Все три аппарата были идентичны по основным параметрам, менялось только навесное оборудование.
Облегчавшие астронавтам передвижение в условиях открытого космоса, четырехколесные двухместные открытые платформы были разработаны компанией Boeing.
Роверы были оборудованы телекамерой (диаметр объектива 16 мм), и фотокамерой (70 мм), системой связи с Землей, каналом получения и передачи информации с борта спускаемого аппарата. Каждый ровер совершил по три поездки общей дальностью: 27,76км; 26,55 км и 35,89 км.
С помощью камер «луномобилей», оставшихся на лунной поверхности, были засняты все три старта астронавтов обратно к Земле.
Китайский луноход Юйту
Третьей державой, отправившей автономный передвижной комплекс на Луну, стал Китай: автоматическая межпланетная станция «Чаньэ-3» доставила шестой по счету луноход на поверхность спутника Земли 14 декабря 2013 года.
Малый шестиколесный луноход весил 140 кг (из них всего 20 кг – аппаратура). Фото с китайского лунохода высотой 110 см, длиной 150 см и шириной 100 см планировалось принимать в течение трех месяцев. Расчетная дистанция выезда составляла 10 км.
Луноход «Юйту», приземлившийся в 30 км. от кратера Лаплас в Море Дождей, нес на борту:
Снимки Луны, сделанные китайским луноходом, приходили с перерывами: трижды Юйту входил в «спящий режим» во время лунной ночи и дефицита заряда. Дважды был потерян механический контроль (в ходе чего Юйту остался без движения), а 22 февраля 2014 года луноход полностью застрял и стал посылать лишь отрывочные сигналы. Официально миссия «Чаньэ-3» закончилась 3 августа 2016 г.
Современные проекты
Для дальнейшего изучения приполярных районов Луны и подтверждения предыдущих высадок космических аппаратов в ближайшем будущем планируется запустить еще несколько экспедиций.
К старту готовятся:
Проект Resource Prospector, модуль ALINA и новый американский луноход The Small Pressurized Rover Concept – предназначенный для исследований Марса – разрабатывались для участия в конкурсе Google Lunar X-Prize, который завершился в марте 2018 года, так и не выявив среди десятка претендентов победителя. Тем не менее, инженеры компании Part-Time Scientists GmbH (ALINA) – не прекращают работы. Предположительно, миссия стартует в 2025 г., в составе совместного проекта Европейского космического агентства.
ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ
Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ
Луноход-1 стал первым успешным планетоходом, предназначенным для исследования других миров. Он был доставлен на поверхность Луны 17 ноября 1970 года на борту посадочного модуля Луна-17. Управление им производилось операторами удаленного контроля в Советском Союзе, он преодолел более 10 километров (6 миль) за почти 10 месяцев своей работы. Для сравнения — аппарату Mars Opportunity потребовалось около шести лет для того, чтобы достичь таких же показателей. В 1960-х годах соединенные Штаты и Советский Союз были вовлечены в «космическую гонку», и каждая из сторон стремилась первой направить человека на Луну, что было способом демонстрации миру своих технологических возможностей. В результате каждой из сторон что-то удалось сделать первой — был запущен в космос первый человек (Советский Союз), были произведены первые запуски двух и трех человек в космос (Соединенные Штаты), осуществлена первая стыковка на орбите (Соединенные Штаты) и, наконец, высадка первого экипажа на Луну (Соединенные Штаты).
Вот перечень успехов лунной программы Советов: Луна-3 (с ее помощью впервые было получено изображение обратной стороны Луны), Луна-9 (этот аппарат в 1966 году впервые совершил мягкую посадку, то есть за три года до полета Апполона-11 и высадки астронавтов на Луну), а также Луна-16 (этот аппарат вернулся на Землю с образцами лунного грунта в 1970 году). А Луна-17 доставила на Луну дистанционно управлявшийся планетоход.
Посадка и спуск аппарата на поверхность Луны
Аппарат Луна-17 успешно стартовал 10 ноября 1970 года, и через пять дней оказался на орбите Луны. После мягкой посадки в районе Моря дождей, находившийся на борту Луноход-1 по аппарели спустился на лунную поверхность.
«Лунаход-1 является лунным планетоходом, по форме он напоминает бочонок с выпуклой крышкой, а передвигается он с помощью восьми независимых друг от друга колес, — было отмечено в кратком сообщении агентства NASA об этом полете. — Луноход оснащен конической антенной, точно направленной цилиндрической антенной, четырьмя телевизионными камерами, а также специальным устройством для воздействия на лунную поверхность в целях изучения плотности лунного грунта и проведения механических тестов».
Этот планетоход работал от солнечной батареи, а в ночное холодное время его функционирование обеспечивал обогреватель, работавший на радиоактивном изотопе полоний-210. В этот момент температура опускалась до минус 150 градусов по Цельсию (238 градусов по Фаренгейту). Луна всегда обращена одной своей стороной к Земле, и поэтому световой день в большинстве точек на ее поверхности продолжается около двух недель. Ночное время также продолжается две недели. Согласно плану, этот планетоход должен был проработать три лунных дня. Он превзошел первоначальные операционные планы и проработал 11 лунных дней — его работа закончилась 4 октября 1971 года, то есть спустя 14 лет после того, как первый спутник Советского Союза был выведен на околоземную орбиту.
По данным NASA, к моменту окончания своей миссии Луноход-1 преодолел примерно 10,54 километра (6,5 мили), он передал на Землю 20 тысяч телевизионных изображений и 200 телевизионных панорам. Кроме того, с его помощью было проведено более 500 исследований лунного грунта.
Успех Лунохода-1 был повторен Луноходом-2 в 1973 году, и второй аппарат уже проехал по лунной поверхности приблизительно 37 километров (22,9 мили). Планетоходу Opportunity потребовалось 10 лет для того, чтобы показать такой же результат на Марсе. Изображение места посадки Лунохода-1 было получено с помощью лунного космического зонда Lunar Reconnaissance Orbiter с камерой высокого разрешения на борту. Так, например, на сделанных в 2012 году снимках отчетливо виден спускаемый аппарат, сам Луноход и его след на поверхности Луны.
Ретроотражатель этого планетохода произвел весьма удивительный «скачок» в 2010 году, когда ученые направили на него лазерный сигнал, что свидетельствует о том, что он не был поврежден под воздействием лунной пыли или других элементов.
Луноход-1 — первый лунный самоходный аппарат. Он был доставлен на поверхность Луны 17 ноября 1970 года, советской межпланетной станцией Луна-17 и проработал на её поверхности до 4 октября 1971 года. Предназначался для изучения особенностей лунной поверхности, радиоактивного и рентгеновского космического излучения на Луне, химического состава и свойств грунта.
Луноход-1 был создан в конструкторском бюро химкинского Машиностроительного завода имени С. А. Лавочкина под руководством Григория Николаевича Бабакина. Самоходное шасси для Лунохода было создано во ВНИИТрансМаш под руководством Александра Леоновича Кемурджиана. Эскизный проект лунохода был утвержден осенью 1966 года. К концу 1967 года была готова вся конструкторская документация.
Автоматическая межпланетная станция Луна-17 с Луноходом-1 стартовала в 10 ноября 1970 года и 15 ноября Луна-17 вышла на орбиту искусственного спутника Луны. 17 ноября 1970 года станция благополучно прилунилась в Море Дождей и Луноход-1 съехал на лунный грунт.
Управление исследовательским аппаратом осуществлялось при помощи комплекса аппаратуры контроля и обработки телеметрической информации на базе «Минск-22» — СТИ-90. Центр управления луноходом в Симферопольском Центре космической связи включал в себя пункт управления луноходом, который состоял из пультов управления командира экипажа, водителя лунохода и оператора остронаправленной антенны, рабочее место штурмана экипажа, а также зал оперативной обработки телеметрической информации. Основную сложность при управлении луноходом составляла задержка времени, радиосигнал двигался до Луны и обратно около 2 секунд, и применение малокадрового телевидения с частотой смены картинки от 1 кадра в 4 секунды до 1 в 20 секунд. В результате общая задержка в управлении доходила до 24 секунд.
В течение первых трёх месяцев запланированной работы, помимо изучения поверхности аппарат выполнял еще и прикладную программу, в ходе которой отрабатывал поиск района посадки лунной кабины. После выполнения программы луноход проработал на Луне в три раза больше своего первоначально рассчитанного ресурса. За время нахождения на поверхности Луны «Луноход-1» проехал 10 540 м, передал на Землю 211 лунных панорам и 25 тысяч фотографий. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведён анализ его химического состава.
15 сентября 1971 года температура внутри герметичного контейнера лунохода стала падать, так как исчерпался ресурс изотопного источника тепла. 30 сентября аппарат на связь не вышел и 4 октября все попытки войти с ним в контакт были прекращены.
11 декабря 1993 года Луноход-1 вместе с посадочной ступенью станции Луна-17 были выставлен фирмой Lavochkin Association на аукционе Сотбис. При заявленной начальной цене 5 000$ торги закончились на сумме 68 500$. По информации российской прессы, покупателем оказался сын одного из американских астронавтов. В каталоге было указано, что лот «покоится на поверхности Луны».
ВНИИТрансМаш
Основным разработчиком шасси для планетоходов (колеса, двигатели, привод, подвеска, система управления ими) в СССР был (и остается до настоящего времени в России) ленинградский ВНИИтрансмаш (ВНИИТМ). В этом учреждении разрабатывались главным образом шасси для танков, так что был накоплен обширный опыт в области создания транспорта повышенной проходимости, ведь общее свойство у планетохода и танка — движение по неподготовленной местности.
В одном из цехов ВНИИТМ
Здесь было создано и испытано множество самых различных устройств — Луноход 1 и 2 (1970), шагающий планетоход отправленный в 1971 году на Марс, прыгающий для Фобоса (1988), робот для очистки крыши разрушенного энергоблока Чернобыльской АЭС (1986), планетоход для неудавшейся экспедиции Марс-96, несколько планетоходов в рамках сотрудничества с зарубежными организациями (в последние годы) и т.д.
Наверное многие обратили внимание, что все луноходы, которые перемещались по другим планетам — колёсные. И это при том, что давно известно множество других подходов — гусеничный, шагающий и т.д. Видимо, есть серьезные причины выбирать именно колеса.
Почти все небесные тела которые доступны нам для исследования имеют твердую поверхность с множеством относительно ровных участков. Там нет болот, зыбучих песков, леса и растительности, которые могли бы потребовать гусениц или шагающих движителей. На Луне и Марсе, также как на Меркурии и Венере — везде колеса вполне можно использовать.
Колёса — очень экономичный вид движителя. Чтобы прокручивать, скажем, гусеницы, нужна куда большая мощность. А ведь это дополнительные батареи, которые нужно доставлять за сотни тысяч километров.
Важна и надежность — проблематично заменить на Марсе порванную гусеницу или сломанный рычаг ноги, в то время как поломка даже нескольких колес совсем необязательно ставит под угрозу выполнение задачи.
Теория движения колесных машин также разработана лучше всего. Достаточно вспомнить, что до сих пор почти не нашли применения шагающие машины, даже в хорошо изученных земных условиях. Сравнительно прост и привод колес от электромоторов, легко обеспечивать разворот.
Итак, выбор колёсного движителя явно оправдан. Далее мы рассмотрим несколько вариантов колёс созданных во ВНИИТМ
Колёса Лунохода
Колеса Лунохода уже можно считать классикой. Большинство последующих макетов и реальных планетоходов хоть что-то, да позаимствовали от них. Колеса состоят из трех титановых ободов, с закрепленной на них стальной сетки с грунтозацепами из того же титана. На твердой поверхности опора происходит на средний обод, на мягком же грунте обод проникает глубоко и тогда работает сетка.
Пробные варианты колёс для Лунохода
Это два пробных варианта колес для Лунохода. Колесо подрессоривается, в одном случае, с помощью упругих металлических лент, в другом — с помощью цилиндрических пружин вдоль оси колеса.
Еще один вариант — здесь внешняя поверхность колеса сделана из упругой сетки, однако под сеткой размещены ленточные пружины, которые работают когда при ударах сетка проминается. Профиль колеса мешает боковому сползанию. Грунтозацепы (в середине) работают главным образом при прогибании сетки на твердых грунтах.
Для планет с сильной гравитацией (Марс, Земля) от непрочной сетки отказываются в пользу сплошной поверхности с грунтозацепами (оболочковое колесо). В случае с марсоходами ученые исходили из первых фотографий «Викинга» где поверхность Марса выглядела каменистой.
Как видно, во всех конструкциях стараются обеспечить хорошую сцепляемость с грунтом (грунтозацепы, сетка), небольшой вес (отсутствие сплошных дисков, по возможности сетка и спицы, либо сплошное но полое колесо), подрессоривание (спицы, пружины и т.п.), меры против бокового сползания (характерный выпуклый либо вогнутый профиль).
Почти во всех колесных планетоходах колесо представляет собой единый (часто даже герметизированный) модуль, включающий также редуктор, электромотор, тормоз, необходимые датчики. Называется такой модуль «мотор-колесо». Применение мотор-колес позволяет, наряду с подвеской, обеспечивать равную нагрузку на все колеса и эффективное использование мощности на неровностях ландшафта, при повисании части колес в воздухе и т.п.
Мотор-колесо в разрезе
Если же рассматривать колесный движитель в целом, возникает вопрос — почему у планетоходов, в частности Лунохода, столько колёс?
Во-первых, до последнего момента не исключалось использование гусениц. В случае с 8 колесами Лунохода это не потребовало бы полного пересмотра конструкции. Во-вторых, снижение нагрузки на грунт. И наконец, надежность — работоспособность при выходе из строя нескольких колес.
На случай заедания в приводе колес в Луноходе были предусмотрены специальные механизмы разблокировки. Пиротехнический заряд по команде с Земли мог перебить вал и в результате неисправное заблокированное колесо стало бы ведомым. У четырех колесного такое было бы невозможно. К счастью, эта возможность не была ни разу использована
ПОДВЕСКА
Подвеску делают независимой для каждого мотор-колеса. Это позволяет преодолевать небольшие выступы и впадины избегая сильных кренов всей машины и перегрузки отдельных двигателей. В идеале, каждое колесо в любой момент времени должно касаться грунта, причем с примерно одинаковыми нагрузками от взаимодействия с ним. Это обеспечивается не только механикой, но и электронной частью, оценивающей нагрузки на двигатели, и подвеску. Механическая часть подвески обычно выполняется в виде рычагов, причем в качестве упругих элементов используются торсионы — стальные или титановые стержни, которые представляют собой «пружину» работающую на кручение. Использование гидравлики проблематично, из-за сильных колебаний температуры на поверхности планет.
Поучительна история гибели Лунохода-2 — на нем был установлен новый датчик крена-дифферента (весь блок автоматики Лунохода-2 разрабатывался с тройным дублированием — как для обитаемой машины).
Датчик в Луноходе-1 был разработан самим ВНИИТМ, но посчитали, что машиностроительное предприятие должно заниматься своим делом и разработку нового датчика поручили другой организации.
В новом датчике использовалась незамерзающая жидкость. Однако, не была учтена малая сила тяжести на Луне. В результате, сразу после прилунения, датчик оказался нерабочим. А ведь этот датчик должен предохранять Луноход от опрокидывания — автоматически останавливать его, если наклон слишком велик (попутно — позволяет получить представление о геометрии лунной поверхности). Здесь же он показал что Луноход стоит под углом 40 градусов еще до съезда с посадочного модуля.
Пришлось ездить без датчика, ориентируясь лишь на то, что видно через телекамеры — линию горизонта и простой уровень — катающийся металлический шарик. Все шло хорошо, но на третий месяц Луноход заехал в довольно большой кратер. Он стоял там с открытой солнечной батареей и подзаряжался. Когда пришло время выезжать из кратера, недооценили угол наклона. В результате, машина зацепилась солнечной батареей, на нее попал грунт, что привело к падению мощности. Попытки стряхнуть грунт только усугубили положение — грунт попал во внутренний отсек. Так закончил свою жизнь Луноход-2.
Кстати говоря, Луноходу-1 повезло еще меньше — при старте взорвался ракетоноситель. Так что тот Луноход-1 что был на Луне — не совсем первый Луноход.
В любом случае Луноход-2 прошел по Луне намного большее расстояние — 40 км за 3 месяца, чем Луноход-1 — 10 км. за 10 месяцев. Сказался опыт, который приобрели исследователи и водители.
Камера для имитации атмосферы планет и марсоход в ней
СКОРОСТЬ ДВИЖЕНИЯ
Возможно для некоторых это станет неожиданностью, но максимальные скорости всех автоматических планетоходов очень небольшие — не более 1-2 км/ч. Собственно, для аппаратов без экипажа это не так важно, поскольку управление ими осложнено задержкой сигнала, которая доходит до десятков секунд. Также, низкая скорость снижает вероятность повреждений при наезде на камень, отсутствуют заносы и т.д.
МАНЁВРЕННОСТЬ
Большой радиус поворота станет проблемой, если поблизости находится скала или расщелина, куда аппарат может сплозти при развороте.
Самые распространенное решение позаимствовано у гусеничных машин: делая различными скорости колес по левому и правому борту машины (в простейшем случае, с использованием тормозов), можно развернуть ее практически на месте.
Такой подход еще и упрощает конструкцию, повышает ее надежность, поскольку не нужно делать поворотных колес. Общеизвестный пример — «Луноход» (1970).
Другой вариант увеличения маневренности — поворотные колеса. Например, параллельный поворот всех колес в нужную сторону был реализован в аппарате «ХМ-ПК» (1976)
ОПАСНОСТЬ ПРОВАЛИВАНИЯ
Следующая проблема — необходимость преодолевать расщелины, не проваливаться на рыхлом грунте. Это может быть решено несколькими путями: колесами большой ширины и диаметра, большим количеством колес по каждому из бортов.
Так например, у Лунохода было 8 широких колес. Их полусферический профиль препятствует боковому сползанию (при движении вдоль склона).
Другой вариант решения (1989) предполагал использование больших (сопоставимых по размеру с самим планетоходом) надувных колес низкого давления с металлическим каркасом и грунтозацепами. Однако, такие колеса плохо выдерживают перепады температур, требуют обслуживания. Зато, они нашли применение на Земле — в тех местах, где необходимо движение по глубокому снегу.
Планетоходы испытывались в Средней Азии, на Камчатке (в зонах свежих извержений) — чтобы было большое разнообразие форм рельефа.. Ведь заранее не было известно, какой грунт, к примеру, на Луне. Были предположения, что грунт находится во взвешенном состоянии и Луноход может просто утонуть. Поэтому испытания проводили также и на снежниках — где снег засыпан вулканическим песком.
ПРЕОДОЛЕНИЕ КАМНЕЙ, ЗАСТРЕВАНИЕ
На планетах, куда сейчас возможна доставка планетоходов, встречается множество камней, скальных выступов, кратеров. То, что для шагающего аппарата будущего, наверное, не будет проблемой (согласитесь, человек легко преодолевает большинство препятствий, которые непреодолимы для колес) для сегодняшних планетоходов проблема весьма актуальная.
Представим ситуацию, когда обычная машина наезжает одним бортом на крупный камень. Возникает крен всей машины и аппарат рискует перевернуться. Для планетохода такое поведение недопустимо, потому подвеска устроена гораздо сложнее — когда одно из колес переезжает камень, остальные могут везти аппарат вполне горизонтально.
Но даже это может не спасти, если камень окажется под днищем планетохода и тот «сядет на брюхо». Поэтому, дорожный просвет (клиренс) стараются делать максимальным. Увеличение клиренса, в свою очередь, может привести к неустойчивости аппарата — центр тяжести должен располагаться как можно ниже (были даже проекты помещать аккумуляторы внутри мотор-колес, но это ведет к другим проблемам).
Были и курьезы. Луноход был доставлен на Луну межпланетной станцией «Луна-17″, но народу было сообщено о запуске очередной ракеты для «продолжения исследований Луны». Советское радио рассказало о луноходе только после успешного прилунения.
Более того, планировалось запустить две ракеты, одна из них резервная, и если на Луне что-то случится с первой, то космонавт должен будет на луноходе подъехать к резервной! Где же ему поместиться? Была предусмотрена тележка, а однажды для проверки к луноходу привязали «Запорожец» — и он успешно его тащил! На Земле, разумеется. Кстати, при выборе места посадки пользовались и американскими снимками Луны, — и откуда они только у нас взялись?
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!