Вычислительные машины комбинированного действия работающие с информацией представленной в дискретной
Вычислительные машины комбинированного действия работающие с информацией представленной в дискретной
По принципу действия вычислительные машины делятся на три больших класса (рис. 5.1): аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).
Рис.5.1. Классификация вычислительных машин по принципу действия.
Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают (рис. 5.2).
Рис.5.2. Две формы предоставления информации в машинах:
а- аналоговая; б- цифровая импульсная.
Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.
Классификация ЭВМ по этапам создания
По этапамсозданияи используемой элементнойбазе ЭВМ условно делятсяна поколения:
1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах;
2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);
5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающихмикропроцессоров,позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;
Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.
Классификация ЭВМ по назначению
По назначению ЭВМ можно разделить на три группы: универсальные (общегоназначения),проблемно-ориентированные и специализированные (рис. 5.3).
Рис.5.3. Классификация ЭВМ по назначению.
Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.
Характерными чертами универсальных ЭВМ являются:
Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.
Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.
К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.
Классификация ЭВМ по размерам и функциональным возможностям
По размерам и функциональным возможностям ЭВМ можно разделить (рис. 5.4) на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).
Рис. 5.4. Классификация ЭВМ по размерам и вычислительной мощности
Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:
Некоторые сравнительные параметры названных классов современных ЭВМ показаны в табл. 5.1.
Таблица 5.1. Сравнительные параметры классов современных ЭВМ
Вычислительные машины комбинированного действия работающие с информацией представленной в дискретной
По принципу действия вычислительные машины делятся на три больших класса (рис. 5.1): аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).
Рис.5.1. Классификация вычислительных машин по принципу действия.
Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают (рис. 5.2).
Рис.5.2. Две формы предоставления информации в машинах:
а- аналоговая; б- цифровая импульсная.
Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.
Классификация ЭВМ по этапам создания
По этапамсозданияи используемой элементнойбазе ЭВМ условно делятсяна поколения:
1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах;
2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);
5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающихмикропроцессоров,позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;
Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.
Классификация ЭВМ по назначению
По назначению ЭВМ можно разделить на три группы: универсальные (общегоназначения),проблемно-ориентированные и специализированные (рис. 5.3).
Рис.5.3. Классификация ЭВМ по назначению.
Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.
Характерными чертами универсальных ЭВМ являются:
Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.
Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.
К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.
Классификация ЭВМ по размерам и функциональным возможностям
По размерам и функциональным возможностям ЭВМ можно разделить (рис. 5.4) на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).
Рис. 5.4. Классификация ЭВМ по размерам и вычислительной мощности
Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:
Некоторые сравнительные параметры названных классов современных ЭВМ показаны в табл. 5.1.
Таблица 5.1. Сравнительные параметры классов современных ЭВМ
Классификация электронных вычислительных машин
1. По принципу действия ЭВМ делятся на три больших класса в зависимости от формы представления информации, с которой они работают:
· АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, то есть в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);
· ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме;
· ГВМ – гибридные вычислительные машины комбинированного действия работают с информацией, представленной как в цифровой, так и в аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
2. По назначению ЭВМ можно разделить на три группы:
· универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах. Характерными чертами универсальных ЭВМ является: высокая производительность; разнообразие форм обрабатываемых данных при большом диапазоне их изменения и высокой степени их представления; обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных; большая емкость оперативной памяти; развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств;
· проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами. Они используются для регистрации, накопления и обработки относительно небольших объемов данных, выполнения расчетов по относительно несложным алгоритмам. Проблемно-ориентированные ЭВМ обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами;
· специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Узкая ориентация ЭВМ позволяет четко определить их структуру, существенно снизить сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения для согласования и сопряжения работы узлов вычислительных систем или специализированного технологического оборудования.
3. По размерам и функциональным возможностям ЭВМ делятся на:
· большие ЭВМ чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие производительность десятки миллионов операций в секунду, емкость памяти до 1000 Мбайт и многопользовательский режим работы. Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Родоначальником современных больших ЭВМ является фирма IBM.
· малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ. Мини-ЭВМ имеют быстродействие десятки миллионов операций в секунду, объем оперативной памяти 512 Мбайт, и могут также поддерживать многопользовательский режим.
· сверхмалые (микро-ЭВМ) обязаны своим появлением изобретению микропроцессора. Именно наличие микропроцессора служило первоначально определяющим признаком микроЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Микро-ЭВМ делятся на универсальные и специализированные; в свою очередь и универсальные и специализированные микро-ЭВМ делятся на многопользовательские и однопользовательские:
— Универсальные многопользовательские микроЭВМ представляют собой мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
— Универсальная однопользовательская микро-ЭВМ – персональный компьютер (ПК).
— Специализированные многопользовательские микро-ЭВМ используются в сетевых вычислительных системах и называются серверами.
— Специализированные однопользовательские микро-ЭВМ представляют собой рабочие станции, и используются для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Следует отметить, что приведенная выше классификация ЭВМ носит достаточно условный характер и может быть расширена по ряду других признаков.
Классификация ЭВМ
Рассмотрим некоторые из наиболее популярных классификаций:
· по назначению
· по размерам и функциональным возможностям
1. сверхбольшие (суперЭВМ)
3. малые
5. сверхмалые (микроЭВМ)
Архитектура суперкомпьютеров основана на идеях параллелизма и конвейеризации вычислений.
В этих машинах параллельно, то есть одновременно, выполняется множество похожих операций (это называется мультипроцессорной обработкой). Таким образом, сверхвысокое быстродействие обеспечивается не для всех задач, а только для задач, поддающихся распараллеливанию.
Наряду с векторно-конвейерной системой обработки данных существует и скалярная система, основанная на выполнении обычных арифметических операций над отдельными числами или парами чисел. Строго говоря, системы, использующие скалярную обработку данных, по своей производительности уступают суперЭВМ, но у них наблюдаются тенденции, характерные для высокопроизводительных вычислительных систем: необходимость распараллеливания больших задач между процессорами.
Типовая модель суперЭВМ должна иметь примерно следующие характеристики:
o высокопараллельная многопроцессорная вычислительная система с быстродействием примерно 100000 МFLOPS;
o емкость: оперативной памяти 10 Гбайт, дисковой памяти 1-10 Тбайт (1 1000Гбайт);
o разрядность: 64; 128 бит.
Высокопараллельные МПВС имеют несколько разновидностей:
В суперЭВМ используются все три варианта архитектуры МПВС:
· структура МIМD в классическом ее варианте (например, в суперкомпьютере ВSP фирмы Burroughs);
· параллельно-конвейерная модификация, иначе, ММISD, т.е. многопроцессорная (Мultiple) МISD-архитектура (например, в суперкомпьютере «Эльбрус 3»);
· параллельно-векторная модификация, иначе, МMISD, т.е. многопроцессорная SIMD-архитектура (например, в суперкомпьютере Сrау 2).
Наибольшую эффективность показала МSIMD-архитектура, поэтому в современных суперЭВМ чаще всего используется именно она (суперкомпьютеры фирм Cray, Fujitsu, NEC, Hitachi и др.).
В настоящее время в мире насчитывается несколько тысяч суперЭВМ начиная от простеньких офисных Cray EL до мощных Cray 3, Cray 4, CrayY-MP C90 фирмы Cray Research, Cyber 205 фирмы Control Data, SХ-3 и SХ-Х фирмы NЕС, VP 2000 фирмы Fujitsu (Япония), VРР 500 фирмы Siemens (ФРГ) и др., производительностью несколько десятков тысяч МFlOPS.
Большие ЭВМ за рубежом чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие следующие характеристики:
· производительность не менее 10 MIPS;
· основную память емкостью от 64 до 1000 Мбайт;
· внешнюю память не менее 50 Гбайт;
· многопользовательский режим работы (обслуживает одновременно от 16 до 1000 пользователей).
Мейнфреймы и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств. Наряду со сверхмощными мейнфреймами, требующими организации двухконтурной водяной системы охлаждения, имеются менее мощные модели, для охлаждения которых достаточно принудительной воздушной вентиляции, и модели, построенные по блочно-модульному принципу и не требующие специальных помещений и кондиционеров.
К суперкомпьютерам часто относят и серверы.
Любой компьютер, если установить на нем соответствуещее сетевое программное обеспечение, способен стать сервером. Кроме того, один компьютер одновременно может выполнять несколько функций-быть, к примеру, почтовым сервером, сервером новостей, сервером приложений и т.д.
· число поддерживаемых пользователей-16-512.
Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные их особенности: широкий диапазон производительности в конкретных условиях применения, аппаратная реализация большинства системных функций ввода-вывода информации, простая реализация микропроцессорных и многомашинных систем, высокая скорость обработки прерываний, возможность работы с форматами данных различной длины.
К достоинствам мини-ЭВМ можно отнести: специфичную архитектуру с большой модульностью, лучшее, чем у мэйнфреймов, соотношение производительность/цена, повышенная точность вычислений.
Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Традиционная для подобных комплексов широкая номенклатура периферийных устройств дополняется блоками межпроцессорной связи, благодаря чему обеспечивается реализация вычислительных систем с изменяемой структурой.
Наряду с использованием для управления технологическими процессами мини-ЭВМ успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.
Продвинутые модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и ёмкостью оперативной памяти, типами периферийных устройств, качеством конструктивных решений и др.
Пеpсональный компьютеp должен удовлетворять следующим требованиям:
· стоимость от нескольких сотен до 5-10 тысяч доллаpов;
· наличие внешних ЗУ на магнитных дисках;
· объём оперативной памяти не менее 4 Мбайт;
· наличие операционной системы;
· способность работать с программами на языках высокого уровня;
· ориентация на пользователя-непрофессионала (в простых моделях).
Основные разновидности портативных компьютеров:
Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Помещается в портфель-дипломат. Для связи с офисом его обычно комплектуют модемом. Ноутбуки зачастую снабжают приводами CD-ROM.
Многие современные ноутбуки включают взаимозаменяемые блоки со стандартными разъёмами. Такие модули предназначены для очень разных функций. В одно и то же гнездо можно по мере надобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съёмный винчестер. Ноутбук устойчив к сбоям в энергопитании. Даже если он получает энергию от обычной электросети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.
Таким образом различают следующие классификации компьютерной техники:
· по этапам развития (по поколениям);
· по условиям эксплуатации;
· по количеству процессоров;
· по потребительским свойствам и т.д.
Ответы на тесты по предмету «Архитектура информационных систем» бесплатно
Правильные ответы отмечены зеленым цветом
16-разрядный процессор может одновременно обрабатывать … информации
адресное пространство эвм с 32-разрядной шиной адреса составляют … адресов
асимметричная пропускная способность цифровых модемов означает, что …
объем потока данных зависит от направления
батарея питания на материнской плате необходима …
для «прошивки» BIOSа
в процессоре pentium обработка инструкций осуществляется параллельно на двух пятиступенчатых конвейерах, а выполнение одной инструкции занимает …
вычислительные машины дискретного действия, работающие с информацией, представленной в дискретной, цифровой форме, – это … вычислительные машины
вычислительные машины комбинированного действия, работающие с информацией, представленной и в дискретной, и в непрерывной форме, – это … вычислительные машины
вычислительные машины непрерывного действия, работающие с информацией, представленной в непрерывной форме, – это … вычислительные машины
вычислительные системы (вс), в которых компоненты (компьютеры/процессоры) равноправны и каждый может брать управление на себя, называются …
ВС с децентрализованным управлением
вычислительные системы (вс), в которых управление выполняет выделенный компьютер или процессор, называются …
ВС с централизованным управлением
вычислительные системы (вс), допускающие режим «отложенного ответа», когда результаты выполнения запроса можно получить с некоторой задержкой, называются …
вычислительные системы (вс), компоненты которых могут располагаться на значительном расстоянии, называются …
в ячейке оперативной памяти содержится … информации
для подключения устройств к интерфейсу centronics используется …
для подключения устройств к интерфейсу rs-232c используется …
для установки современных видеоадаптеров используется слот …
компьютеры подключаются к локальной сети через …
мощность блока питания измеряется …
неверно, что … находиться внутри системного блока
неверно, что … является устройством ввода информации
объем одного современного модуля оперативной памяти для ibm-совместимых персональных компьютеров составляет …
объем памяти, который занимает один символ ascii, – …
оперативное запоминающее устройство (озу) предназначено …
для считывания и записи информации, и после выключения питания машины эта информация пропадает
организация структуры эвм в виде функционально и конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком магнитном диске) называется …
основным назначением интерфейса centronics является подключение …
основным принципом построения эвм является …
перезагрузка системного блока, в котором кнопки reset и power совмещены, …
происходит, если слегка нажать кнопку POWER один раз
полнота функций, выполняемых информационно-вычислительной сетью, означает …
обеспечение выполнения всех предусмотренных функций и по доступу ко всем ресурсам, и по совместной работе узлов, и по реализации всех протоколов и стандартов работы
понятия «адаптер» и «контроллер» …
имеют соподчиненное значение: адаптер – это контроллер, способный к самостоятельным действиям после получения команд от обслуживающей его программы
понятия «многомашинные вычислительные системы» и «информационно-вычислительные сети» …
являются соподчиненными: информационно-вычислительная сеть – это многомашинная вычислительная система, в которой компьютеры связанны между собой через устройства обмена информацией по каналам связи
последовательность выполнения инструкций процессором …
может быть нарушена вследствие воздействия как внутренних, так и внешних причин
при прокладке внутри одного здания наибольшее распространение получили локальные сети, использующие …
при прокладке кабеля внутри одного здания наиболее высокую скорость передачи данных обеспечивают локальные сети, использующие …
программно-видимые свойства процессора называются …
регуляторы напряжения на материнской плате используются …
для преобразования входного напряжения
сеть, в которую входят пользователи одного предприятия, находящиеся в разных помещениях, – это … вычислительная сеть
сеть, в которую входят пользователи одного района, города или региона, – это … вычислительная сеть
система компьютеров, объединенных каналами передачи данных, – это …
скорость считывания данных из ячейки оперативной памяти измеряется …
не относятся к диалоговым средствам
суперскалярный процессор имеет …
два и более конвейеров
тактовая частота модулей памяти ddr dram приблизительно находится в диапазоне …
универсальность информационно-вычислительной сети означает …
возможность подключения к сети разнообразного технического оборудования и программного обеспечения от разных производителей
устройства, подключаемые к системному блоку, называются …
устройства сопряжения предназначены для подключения …
периферийных устройств узкой специализации
частота … является опорной для генератора тактовых импульсов