Вычислительные устройства машины электронно вычислительные машины

Электронно-вычислительная техника: с чего все началось

Вычислительные устройства машины электронно вычислительные машины. Смотреть фото Вычислительные устройства машины электронно вычислительные машины. Смотреть картинку Вычислительные устройства машины электронно вычислительные машины. Картинка про Вычислительные устройства машины электронно вычислительные машины. Фото Вычислительные устройства машины электронно вычислительные машины

Персональный компьютер – то, без чего невозможно представить жизнь современного человека. Но не всегда подобные устройства присутствовали в реальности. Развитие таких устройств началось задолго до появления электричества.

В данной статье будет рассказано о том, каким образом компьютеры и другие «виртуальные машины» пришли в современность. Информация будет одинаково полезна и взрослым, и школьникам.

Вычислительная техника – определение

Сначала требуется понять, что собой представляет ЭВМ. Лишь в этом случае получится выбрать правильное направление в изучении истории.

Трактуется соответствующий термин совершенно по-разному. В широком смысле это – техустройства, включающие в свой состав:

Данные «компоненты» используются для обработки информации и различных процессов. Помогают описывать всевозможные явления. Проводят вычисления, включая математические.

В качестве вычислительной машины сегодня подразумевают компьютеры – персональные, ноутбуки или суперкомпьютеры. Современные технологии позволяют классифицировать все ЭВМ на разные категории.

Классификация электронно-вычислительных устройств

Каждый вычислительный прибор предлагает человеку те или иные возможности. Нынешнее развитие технологий и прогресса предусматривает разделение рассматриваемых машин на следующие области:

Это не самая полная классификация. Из года в год она расширяется. Но перечисленные «блоки» являются наиболее распространенными. Их считают основными.

Этапы развития

В истории развития ЭВМ принято выделять несколько ключевых этапов. К ним относят:

Это условное разделение по хронологическим принципам. Пока использовалась одна вычислительная машина, люди активно развивали другие подобные устройства.

С чего все началось

Вычислительная техника появилась задолго до современности. Все действия человека требовали проведения подсчетов. Пример – обмен, разделение добычи, формирование запасов для дальнейшей жизни.

Раньше наиболее распространенным способом подсчета случило использование собственных пальцев. Позже человек стал задействовать палки, узлы и камни. Но с развитием прогресса требовалось выполнение более сложных задач. Так людям приходилось придумывать различные приспособления, которые смогли бы посодействовать в реализации поставленных целей.

История сложилась так, что в странах были разные меры:

Конвертация из одной системы в другую требовали наличия определенных знаний и навыков. Этим занимались специально обученные лица. Их нередко вызывали из других стран. Так система вычисления потребовала изобретения первых машин вычислительного характера.

Ручной этап

Как только человечество стало нуждаться в вычислениях, оно начало активно использовать различные предметы для этого. И с течением времени изобретать спецустройства для подсчетов.

Изначально применялись палочки, пальцы, узелки и им подобные мелкие предметы. Первая «машина», которая облегчила вычисления – это специальная доска. Называется «абак». Появилась в 5-6 веках до нашей эры.

Здесь процесс вычисления осуществлялся за счет перемещения камешков и костей в углубления бронзовых досок. Они также могли изготавливаться из камня или слоновой кости. С течением времени «абак» получил несколько полосок и колонок. В Греции такое устройство появилось в 5 веке до Н. Э.. Японцы называли такую машину «серобян», а китайцы – «суанпан».

На Руси примерно в 15 веке появился «дощатый счет», который внешне напоминал нынешние счеты. А в 9 веке в Индии изобрели позиционную систему вычисления.

В начале 17 века Леонардо да Винчи смог создать 13-разрядное устройство для подсчетов сумм. Оно включало в себя десятизубные кольца. В основе были стержни, на которых крепились 2 зубчатых колесика. Они отличались по размеру друг от друга.

Механический этап

Эволюция ЭВМ напрямую зависела от развития человечества. В 17 веке математические подсчеты стали ключевыми в развитии истории. Это привело к изобретению новых устройств для расчетов. Но до компьютеров было еще далеко.

В 17 веке Паскаль смог сделать «суммирующую» машинку, которую назвали Паскалиной. Она умела:

А в 1670-80-х годах Лейбниц сконструировал счетную машину, которая умела выполнять все арифметические действия. За последующие 200 лет ученые изобрели несколько аналогичных «девайсов». Но все они не получили широкого распространения. Связано это с тем, что машины работали долго.

В СССР в 1879 году Чебышев изобрел счетную машину. Она справлялась с вычитанием и сложением многозначных чисел. Огромную популярность приобрел некий арифмометр. Его изобрел инженер из Питера Однер в 1874. Работала конструкция достаточно быстро.

Электромеханический этап

Активное развитие вычислительной техники началось именно в 19 веке. В 30-х годах 20-го столетия в свет в СССР вышел арифмометр, который приняли за совершенный. Назывался «Феликс». Использовались такие устройства до 1978 года.

Электромеханический этап в истории является не самым долгим. Он длился порядка 60 лет. Начинается с созданием первого в мире табулятора. Это устройство появилось, благодаря инженеру Гурману Холлериту. Произошло это в 1887 году. Машина включала в себя:

Девайс считывал и занимался сортировкой статистических записей, которые делались на перфокартах. Позже фирма Голлерита (Холлерита) стала основой IBM.

Ванновар Буш в 1930 году смог представить миру дифференциальный анализатор. Для его работы требовалось электричество, а для хранения информации не удавалось обходить без электронных ламп. Задействовалась машинка для проведения сложных математических подсчетов.

В 1936 году Алан Тьюринг разработал устройство, которое стало основой современных компьютеров. «Девайс» умел пошагово выполнять операции, запрограммированные во внутренней памяти.

Через год Джордж Стибиц (Америка) изобрел электромеханическое средство для выполнения двоичных сложений. В основе лежала булевая алгебра. Она стала неотъемлемой частью современных ЭВМ.

Начало компьютерной эры

Развитие электрических устройств и человечества требовало от населения создания разнообразных технологий, облегчающих жизнь. Вторая Мировая Война стала крайне важным моментом в рассматриваемом вопросе.

Конрад Цузе (Германия) в 1941 году создал первую вычислительную машину, которая управлялась программами. Она называется Z3. Основана на:

Машина работала в двоичной системе, а также оперировала числами с плавающей запятой. Но первое поколение компьютеров начинается с усовершенствованного устройства Цузе – Z4.

В 1942 году американцы создали ЭВМ на вакуумных трубках, а через год в Англии построили первую секретную и реально признанную электронно-вычислительную машину под названием «Колосс». Там было 2 000 электронных ламп для хранения и обработки данных.

Изначально «девайс» предназначался для взлома и расшифровки кодов секретных сообщений, которые передавались по немецким шифровальным машинам «Энигма». Уинстон Черчилль после войны подписал указ об уничтожении соответствующего устройства.

Появление архитектуры

В 1945 году Джон фон Нейман смог сделать прообраз архитектуры общего назначения, которая используется в основе современных компьютеров. Математик предложил записывать программы в виде кодов непосредственно в память машин. Предусматривалось совместное хранение утилит и данных на «девайсе».

Эта теория стала основой ENIAC. Так назывался первый компьютер, созданный в США. Имел он весьма внушительные параметры:

За секунду такой компьютер производил до 300 операций умножения или 5 000 сложения.

Универсальная программируемая европейская ЭВМ появилась в 1950 году в СССР. Малая электронная счета машина изобретена Сергеем Лебедевым. Быстродействие ограничивалось 50 операциями в секунду. Использовал «девайс» около 6 000 электровакуумных ламп.

В 1952 возникла электронная счетная машина БЭСМ. Тоже разработана под предводительством Лебедева. Выполняло устройство до 10 000 операций. Ввод данных производился через перфоленты и фотопечати.

Чуть позже началось создание больших ЭВМ «Стрела» и «Урал». Последние разработки устройств аппаратно и программно совместимы друг с другом. Для них имелся широкий спектр периферических устройств, благодаря чему удавалось менять комплектацию «девайса».

Лампы, которые использовали первые компьютеры, быстро выходили из строя. Транзисторы, изобретенные в 1947, решили соответствующую проблему. Через электрические свойства проводников удавалось выполнять математические вычисления, но быстрее и с меньшим потреблением энергии.

Транзисторы массово производятся американской компанией «Техас Инструментс». В 1946 в Массачусетсе возник первый построенных на транзисторах компьютер второго поколения – TX-O.

Использование ЭВМ началось не только в военных целях, но и в государственных. Различные фирмы и компании применяли такие компьютеры для подсчетов. Это привело к созданию новых технологий. Пример – разработка высокоуровневых языков программирования. К ним относят:

Были разработаны приложения-трансляторы, при помощи которых коды с перечисленных языков преобразовывались в команды, считываемые задействованным компьютером.

Интегральные микросхемы

В 1958-60-х Роберт Нойс и Джек Килби выпустили в свет интегральные микросхемы. В основе находились кремниевые или геманиевые кристаллы. Микросхемы достигали в размерах не более сантиметра и работали быстрее «предшественников». Использовали меньше энергии. Это – шаг к появлению третьего поколения компьютеров.

В 1964 фирма IBM создала первый компьютер семейства SYSTEM 360. В основе него лежали интегральные микросхемы. Так началось массовое производство компьютеров. Мир увидел более 20 тысяч экземпляров SYSTEM 360.

В 1972 СССР разработали единую серию компьютеров. Это – стандартизированные комплексы для работы вычислительных центров с общей системой команд. В основе лежит американская система IBM 360.

Далее компания DEC предложила вниманию мини-компьютер PDP-8. Это – первый коммерческий проект соответствующей области. Небольшая стоимость позволила приобретать девайс даже небольшим корпорациям.

В это же время начали развиваться операционные системы, а также периферийные устройства. Языки программирования тоже получили более широкое распространение и развитие.

Персональные компьютеры в мире

Четвертым поколением компьютеров считают девайсы, созданные после 1970. Тогда возникли интегральные микросхемы. С ними компьютеры обладали такими характеристиками и особенностями:

Стив Джобс и компания Apple – первые производители персональных компьютеров. Сконструированы такие девайсы в 1976. Назывались Apple 1. Стоили по 500 долларов. В 1977 в свет вышло поколение Apple 2.

Компьютеры начали походить на бытовые приборы: получили не только широкое распространение, но и оригинальные дизайн с интерфейсов, которым было удобно пользоваться рядовому юзеру.

В 1979 IBM выпустила свой первый компьютер на рынок товаров и услуг. А в 1981 появился первый микрокомпьютер. Он имел:

В 1984 Apple разработала машину Macintosh, обладающую удобным пользовательским интерфейсом.

Пятое поколение

Начинается примерно с 1992 года. Концепция получила формулировку: вычислительные машины, созданные при помощи сверхсложных микропроцессоров. У них параллельно-векторная структура, позволяющая одновременно выполнять десятки последовательных команд, заложенных в программное обеспечение.

У таких машин несколько сотен процессоров с параллельной работой. Помогают создавать эффективно функционирующие сети и очень быстро производить обработку данных.

Нынешнее время

Примерно с 2013 года началось стремительное развитие машин вычислительного типа шестого поколения. Представлены электронными и оптоэлектронными ЭВМ с работой на основе десятков тысяч микропроцессоров. Они наделены параллелизмом. Способны моделировать архитектуру нейронных биологических систем, благодаря чему возможно успешное распознавание сложных образов.

Сейчас для «крупных» операций в качестве решений используют суперкомпьютеры. Они не предназначаются для стационарного «домашнего» применения. Обладают множеством функций и огромной мощностью. Основная сфера применения – Big Data.

Технологии и IT стремительно развиваются. Неизвестно, какие еще идеи будут реализованы в ближайшее время. Но в эру цифровых технологий разработчики стараются внедрять в свои машины искусственный интеллект.

Тенденции показывают то, что фирмы-производители стараются по сей день совершенствовать рассматриваемые «девайсы». Настоящее время демонстрирует следующее — они больше ориентированы на «рядового пользователя». Наделяются не только красивым интерфейсом, но и обладают неплохими мощностями.

Также вам может быть интересна статья «Компьютер – как все начиналось».

P. S. Интересуют компьютеры и сфера информационных технологий? Обратите внимание на профессиональные курсы Otus!

Источник

БЕЛОРУССКИЙ ИНСТИТУТ ПРАВОВЕДЕНИЯ

Дистанционное образование

А.И.Бородина, Л.И.Крошинская, О.Л.Сапун

ОСНОВЫ ИНФОРМАТИКИ

И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Электронные вычислительные машины.

Персональные компьютеры

Минск

2004

БЕЛОРУССКИЙ ИНСТИТУТ ПРАВОВЕДЕНИЯ

А.И.Бородина, Л.И.Крошинская, О.Л.Сапун

И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Электронные вычислительные машины.

Электронные вычислительные машины.

Персональные компьютеры

ТЕМАТИЧЕСКИЙ ПЛАН

краткая аннотация

Рассматриваются основы организации и функционирования ЭВМ. Дается описание основных элементов процесса вычислений. Приводится классификация ЭВМ по различным признакам. Рассматриваются вопросы классификации персональных ЭВМ, характеристика основных и дополнительных устройств персонального компьютера.

1. Организация
и основы функционирования ЭВМ

Среди всех изобретений человека трудно найти другое, развивающееся столь же динамично, как вычислительная техника. Конструкция вычислительной машины создавалась с учетом тех действий, которые выполняет человек при обработке информации. В самом деле, любому процессу вычислений, который производится человеком, свойственны следующие основные элементы: хранение информации, обработка информации, управление вычислительным процессом.

Хранение информации. Здесь под информацией подразумеваются исходные данные, промежуточные и окончательные результаты счета, а также формулы и способ счета, различного рода условия и т.п. Эта информация человеком частично запоминается, частично записывается на бумаге. Часть информации берется из различных справочников и таблиц. Память человека, бумага, справочники и таблицы являются различными видами запоминающих устройств.

Обработка информации. При обработке информации производится обмен информацией между устройством, предназначенным для выполнения арифметических действий, и запоминающим устройством: исходные данные с листа бумаги переносятся в машину, а затем результат вычислений снова записывается на бумаге или запоминается человеком.

Управление вычислительным процессом. В соответствии с планом вычислений человек производит вычислительные операции в определенной последовательности, каждый раз, решая, какие данные, в каком порядке обрабатывать. Автоматически управляемая вычислительная машина должна быть устроена так, чтобы все перечисленные элементы процесса вычислений осуществлялись в ней без участия человека во время ее работы. В соответствии с этим требованием вычислительная машина должна содержать различные устройства, осуществляющие эти элементы процесса вычислений.

В каждой вычислительной машине должна быть обеспечена возможность сообщить машине (поместить в нее) все необходимое для решения задачи. Чтобы иметь такую возможность, нужно специальное устройство, позволяющее воспринимать информацию из внешнего мира и передать ее в машину. Такое устройство называется устройством ввода.

Информация, которая посредством устройства ввода передается в вычислительную машину, попадает в устройство, которое по аналогии с человеческой памятью называют обычно памятью машины. Иногда слово «память» заменяют словом «запоминающее устройство».

Любая электронная цифровая вычислительная машина имеет оперативную и внешнюю память. Здесь есть аналогия с памятью человека. Несмотря на то, что мозг человека является отличной памятью, мы не можем им ограничиться. Все, что по каким-либо причинам трудно или не нужно держать в памяти, люди фиксируют на бумаге (в виде записных книжек, справочников, книг и др.).

Оперативная память разбивается на части – ячейки памяти. Ячейка – это участок памяти машины, предназначенный для хранения информации, которой может быть либо команда, либо число, либо набор символов, являющихся частью обрабатываемого текста. То есть память можно представить в виде запоминающей среды, состоящей из множества ячеек. Разбиение памяти на ячейки является условным и вызвано удобством обращения к ней. В действительности же ячейки памяти, как правило, не является каким-либо самостоятельным устройством машины.

Информация, записанная в некоторую ячейку, хранится в ней до тех пор, пока в эту же ячейку не будет записана новая информация. При этом все, что хранилось до этого момента в данной ячейке, автоматически уничтожается (стирается). При считывании информации, хранящейся в некоторой ячейке, эта информация продолжает оставаться в ней, т.е. из памяти выдается как бы «копия» данного слова для передачи ее в другие устройства машины, сам же «оригинал» продолжает храниться на прежнем месте.

Расположение информации в памяти определяется адресами (номерами) полей памяти. Каждый адрес служит именем ячейки.

В современных моделях ЭВМ выделяют еще постоянную память (постоянное запоминающее устройство). Постоянная память (ПЗУ) характеризуется тем, что запись информации в ней выполняется на предприятии-изготовителе, после чего любые изменения состояния памяти становятся невозможными.

Но основная цель машины – переработка информации, производство вычислительных и других действий. Устройство машины, предназначенное для этой цели, называется арифметическим устройством. Арифметическое устройство обладает способностью получать информацию, например, в виде чисел, из памяти, производить некоторые операции и отправлять полученные результаты обратно в память.

Однако недостаточно ввести в машину числа, произвести над ними требуемые операции. Нужно, чтобы с этими результатами мог познакомиться человек, иначе работа вычислительной машины теряет смысл. Значит, необходимо каким-то образом преобразовать информацию в доступную для восприятият человеком. Для этой цели в вычислительных машинах предусматривается специальное устройство, которое называется устройством вывода. С помощью устройства вывода обеспечивается передача результатов работы вычислительной машины во внешний мир.

Для связи пользователя с машиной предусмотрена клавиатура. С помощью клавиатуры можно вмешаться в работу и выполнить некоторые другие действия.

Вопросы для самоконтроля

2. Классическая структурная схема ЭВМ и назначение ее основных узлов

В функциональном отношении любая ЭВМ состоит из элементов узлов и устройств.

Элемент – функциональная единица ЭВМ, выполняющая элементарную операцию над одной или несколькими цифрами и представляющая собой законченную электрическую схему. Примерами могут служить логические элементы, выполняющие функции алгебры-логики: И, ИЛИ, НЕ и др.

Узел – функциональная единица ЭВМ, состоящая из элементов и выполняющая операции над одним или несколькими числами или словами. Примерами могут служить сумматоры, счетчики, дешифраторы и др.

Устройство – функциональная единица ЭВМ, состоящая из элементов и узлов и выполняющая арифметические и логические операции, операции ввода-вывода данных и управления ходом вычислительного процесса. Например арифметические и запоминающие устройства, устройство управления, внешние устройства и другие.

Электронная вычислительная машина – это совокупность устройств, способных выполнять разнообразные арифметические, логические операции и др. без участия человека. Структура вычислительной машины это отображение состава устройств машины и путей обмена информации между устройствами.

Первая ЭВМ была разработана в 1943 г., быстродействие такой ЭВМ было 5 000 операций сложения в секунду, весила она более 30 тонн и энергии потребляла в 1 000 раз больше, чем персональный компьютер. Состояла она из 18 000 электронных ламп.

Технология изготовления ЭВМ постоянно изменялась, но на протяжении большей части своего существования ЭВМ сохраняла архитектуру, предложенную в 40-х гг. XX в. выдающимся математиком Джоном фон Нейманом. Согласно этой модели все оборудование вычислительной машины разбивается на пять главных элементов:

Модель фон Неймана легла в основу практически всех созданных компьютеров. Джон фон Нейман сформулировал следующие основные принципы функционирования ЭВМ:

Одной из главных концепций Джона фон Неймана была концепция хранимой программы: программа хранится в памяти машины точно так же, как и числа. Это позволяет оперировать с закодированной в двоичном коде программой так же, как и с числами, что дает возможность изменять программу по ходу ее выполнения (этот процесс называется переадресацией).

Джон фон Нейман внес фундаментальный вклад в развитие идей конструирования ЭВМ и программирования. В 1947 г. по его идеям разрабатывались английские машины ЭДВАК и ЭДСАК, а в 1951г. – СЕАК и УНИАК (США). Это был поворотный пункт истории, с которого началось стремительное развитие вычислительной техники. В дальнейшем такие ЭВМ развивались достаточно быстро благодаря использованию новейших достижений науки и техники (рис.1).

Рис.1. Основные элементы ЭВМ

Основными элементами ЭВМ являются:

Процессор выполняет логические и арифметические операции, определяет порядок выполнения операций. Процессор работает под управлением программы. В состав процессора входят:

Арифметико-логическое устройство осуществляет арифметические и логические операции над данными.

Устройство управления отвечает за порядок выполнения команд, из которых состоит программа.

В регистрах общего назначения сохраняются промежуточные результаты расчетов.

Кэш-память служит для повышения быстродействия процессора.

Память предназначена для записи, хранения, выдачи данных. Существуют следующие виды памяти:

Оперативная память
(ОЗУ) используется для кратковременного хранения изменяемой в процессе выполнения процессором вычислительной операции. ОЗУ используется для хранения программ пользователя, исходных данных, выходных и промежуточных данных. При выключении ЭВМ информация, которая хранилась в ОЗУ, теряется.

Постоянная память (ПЗУ) используется для хранения не изменяющейся при работе ЭВМ информации. Такой информацией является, например, тестовая программа, которая стартует при включении ЭВМ и проверяет работоспособность всех устройств, как внутренних, так и внешних, драйверы устройств и др.

Внешняя память (ВЗУ) предназначена для долговременного хранения информации. К устройствам внешней памяти относятся накопители на магнитной ленте, накопители на жестких дисках (винчестер), накопители на гибких дисках (дискеты), накопители на оптических дисках и т.д..

Системная шина используется для передачи информации между процессором и остальными устройствами ЭВМ. Она состоит из:

Данные (в качестве данных могут выступать программы и команды) пересылаются по шине данных по адресам, которые указаны на адресной шине. Шина управления отслеживает, чтобы данные при перемещении не мешали друг другу и перемещались по очереди.

Устройства ввода информации предназначены для ввода информации (данных и команд) с внешнего носителя в память компьютера. К таким устройствам относятся:

Устройства вывода информации осуществляют вывод информации на внешние устройства. К ним относятся:

Вопросы для самоконтроля

3. Классификация ЭВМ

Существует много методов классификации компьютеров, среди которых наиболее распространенным является методов классификации компьютеров по габаритам. По этому принципу различают:

Большие ЭВМ. Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфрэймами (mainframe). В России за ними закрепился термин большие
ЭВМ. На базе таких суперкомпьютеров создают вычислительные
центры, включающие несколько отделов или групп. Штат обслуживания большой ЭВМ составляет до многих десятков человек.

Несмотря на широкое распространение персональных компьютеров, роль больших ЭВМ не снижается. Они отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Мини-ЭВМ.
От больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшими производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями, банками и некоторыми высшими учебными заведениями, сочетающими учебную работу с научной. На промышленных предприятиях мини-ЭВМ управляют производственными процессами. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Микро-ЭВМ. Организации, использующие микро-ЭВМ, обычно не создают вычислительных центров. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких человек.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там они осуществляют вспомогательные операции, для которых не имеетсмысла использовать дорогие суперкомпьютеры.

Персональный компьютер (ПК) – это компьютер, который предназначен для обслуживания одного рабочего места. Бурное развитие персональный компьютер получил в течение последних двадцати лет, так как, несмотря на свои небольшие габариты и относительно невысокую стоимость, он обладает немалой производительностью. По своим возможностям многие современные персональные модели компьютеров превосходят большие ЭВМ 70-х гг., мини-ЭВМ 80-х гг. и микро-ЭВМ первой половины 90-х гг. ПК вполне способен решать задачи большинства малых предприятий и отдельных лиц. В связи с развитием Интернета широкую популярность ПК получили после 1995г.

Вопросы для самоконтроля

4. КЛАССИФИКАЦИЯ ПерсональныХ компьютерОВ

Модели персональных компьютеров условно можно разделить на две категории: бытовые ПК и профессиональные ПК. Но в последние годы границы между профессиональными и бытовыми моделями в значительной степени стерлись. В качестве бытовых нередко используют профессиональные высокопроизводительные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств. Под термином мультимедиа подразумевается сочетание нескольких видов данных в одном документе (текстовые, графические, музыкальные и видеоданные) или совокупность устройств для воспроизведения этого комплекса данных.

Существуют следующие признаки классификации персональных компьютеров:

Классификация по назначению. С 1999 г. в области персональных компьютеров начал действовать международный сертификационный стандарт – спецификация РС99. Согласно этому стандарту персональные компьютеры делятся на группы, к каждой из которых предъявляются минимальные и рекомендуемые требования. Новый стандарт устанавливает следующие категории персональных компьютеров:

Согласно этому стандарту большинство персональных компьютеров попадают в категорию массовых
ПК
. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, т.е. средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных
ПК
– к средствам воспроизведения графики и звука.

Классификация по уровню специализации. По уровню специализации компьютеры делятся на:

Универсальные компьютеры решают широкий круг задач и могут быть произвольной конфигурации.

Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Компьютеры, интегрированные в бытовую технику, например в стиральные машины, СВЧ-плиты и видеомагнитофоны, тоже относятся к специализированным.

Графические станции – это специализированные ПК, предназначенные для работы с графикой. Их используют при подготовке кино- и видеофильмов, в издательских отделах, а также для подготовки рекламной продукции.

Файловые серверы – это специализированные компьютеры, объединяющие компьютеры предприятия в одну локальную сеть.

Сетевыми
серверы
— это компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети Интернет.

Грань между универсальными и специализированными компьютерами порой незначительна, так как во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры.

Классификация по типоразмерам. По типоразмерам персональные компьютеры делятся на:

Настольные модели распространены наиболее широко. Они отличаются простотой изменения конфигурации за счет несложного подключения дополнительных внешних устройств или установки дополнительных внутренних компонентов.

Портативные
модели компьютеров можно использовать в качестве средства связи. Если подключить такой компьютер к телефонной сети (при наличии модема), то можно из любой географической точки установить обмен данными между ним и центральным компьютером своей организации. Для работы в стационарных условиях портативные компьютеры не очень удобны, но их можно использовать как системный блок, подключив к нему монитор, клавиатуру, мышь настольного компьютера.

Карманные
модели позволяют хранить оперативные данные и получать к ним быстрый доступ. Некоторые карманные модели имеют жестко встроенное программное обеспечение, что облегчает непосредственную работу, но снижает гибкость в выборе прикладных программ.

Классификация по совместимости. Существует множество различных видов и типов компьютеров, которые выпускаются разными фирмами и работают с разным программным обеспечением. Поэтому очень важным вопросом становится совместимость различных компьютеров между собой. От совместимости зависят взаимозаменяемость узлов и приборов, предназначенных для разных компьютеров, возможность переноса программ с одного компьютера на другой и возможность совместной работы разных типов компьютеров с одними и теми же данными.

По аппаратной совместимости
различают так называемые аппаратные
платформы. В области ПК сегодня наиболее широко распространены две аппаратные платформы:

Принадлежность компьютеров к одной аппаратной платформе повышает совместимость между ними, а принадлежность к разным платформам – понижает.

Кроме аппаратной совместимости существуют и другие виды совместимости:

Вопросы для самоконтроля

5. Характеристика основных устройств
ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

Персональный компьютер – универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которая считается типовой. В таком комплекте компьютер обычно поставляется. В состав базовой конфигурации входят следующие устройства:

Системный блок. Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними
или
периферийными.

По внешнему виду системные блоки различают формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении.

В состав системного блока входят:

Материнская плата. Материнская плата – основная плата персонального компьютера. На ней размещаются:

Процессор – это основная микросхема компьютера, в которой и производятся вычисления. Конструктивно процессор состоит из ячеек, данные в которых могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами.

Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд.

Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это значит, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейство процессоров. Например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Позже выпускались процессоры Intel 80286, Intel 80486, Intel Pentium 133, 166, Intel Pentium ММХ, Intel Celeron, Intel Pentium III, Intel Pentium IV и т.д. Для всех этих процессоров действует принцип совместимости от более позднего к более раннему, т.е. каждый новый процессор понимает все команды своих предшественников, но не наоборот.

Оперативная память (RAM – Random Access Memory) – это массив кристаллических ячеек, способных хранить данные. С точки зрения физического принципа действия, различают динамическую память (DRAM) и статическую память (SRAM). Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти), предназначенной для оптимизации работы процессора.

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х гг. поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт. К середине 90-х гг. он увеличился до 8 Мбайт, а затем до 16 Мбайт. Сегодня минимальным считается размер оперативной памяти 64 Мбайт, а обычным – 128 Мбайт. Очень скоро и эта величина будет превышена в несколько раз.

Оперативная память в компьютере размещается на стандартных панелях, называемых модулями. Модули оперативной памяти вставляются в соответствующие разъемы на материнской плате.

Конструктивно модули памяти имеют два исполнения – однорядные (SIMM-модули) и двухрядные (DIMM-модули). Многие модели материнских плат имеют разъемы, как того, так и другого типа, но комбинировать на одной плате модули разных типов нельзя. SIMM-модули поставляются объемами 4, 8, 16, 32 Мбайт, а DIMM-модули – 16, 32, 64, 128 Мбайт.

Постоянная память (ПЗУ) и система BIOS. В момент включения компьютера в его оперативной памяти нет ничего – ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки. Но процессору нужны команды, в том числе и в первый момент после включения. Поэтому сразу после включения происходит считывание команд с ПЗУ (постоянное запоминающее устройство). Микросхема ПЗУ длительное время хранит информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» – их записывают туда на этапе изготовления микросхемы.

Комплект программ, входящих в ПЗУ, образует базовую систему вводавывода
(BIOS – Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютерной системы и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.

Шины. С остальными устройствами компьютера, в первую очередь с оперативной памятью, процессор связан группами проводников, которые называются шинами. Существует три основные шины: шина данных, адресная шина, командная шина. У процессоров Intel 32-разрядная адресная шина, т.е. она состоит из 32 параллельных линий. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, который указывает на одну из ячеек оперативной памяти. По шине данных происходит обмен информацией между оперативной памятью и процессором. По шине команд поступают команды в процессор также из оперативной памяти, но не из той области, где хранятся данные, а из той, где хранятся программы.

Жесткий диск. Жесткий диск (винчестер) – это устройство для долговременного хранения больших объемов данных и программ. На самом деле, это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся на валу с высокой скоростью. Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство – контроллер жесткого диска.

К основным параметрам жестких дисков относятся емкость и производительность. Емкость дисков зависит от технологии их изготовления. В настоящее время большинство производителей жестких дисков используют разработанную компанией IBM технологию. Теоретический предел емкости одной пластины, исполненной по этой технологии, составляет порядка 20 Гбайт. В настоящее время технологический уровень приближается к 10 Гбайт на пластину.

При обращении к жесткому диску необходимо указать его имя. Это имя С:. Независимо от конфигурации компьютера это имя жестко закреплено. Иногда для удобства работы пользователя, или когда на одном компьютере работает несколько пользователей, жесткий диск разбивают специальной программой на несколько логических дисков. Каждый пользователь может работать с выделенным для него логическим диском. Имена логических дисков – латинские буквы, следующие по алфавиту за буквой С:. Например, если винчестер разбит на два логических диска, то их имена будут С: и D:, если на три – C: D: E: и т.д.

Дисковод гибких дисков. Данные на жестком диске могут храниться годами, однако иногда требуется их перенос с одного компьютера на другой. Для небольших объемов данных используют так называемые гибкие
диски (дискеты
), которые вставляют в специальный накопитель – дисковод. Имя этого дисковода А:. Это имя так же, как и имя винчестера, жестко закреплено.

Первый компьютер IBM PC был выпущен в 1981 г. К нему можно было подключить внешний накопитель, использующий односторонние гибкие диски диаметром 5,25 дюйма. Емкость диска составляла 160 Кбайт. В следующем году появились аналогичные двусторонние диски емкостью 320 Кбайт. Начиная с 1984 г. выпускались гибкие диски 5,25 дюйма высокой плотности (1,2 Мбайт). В наши дни диски размером 5,25 дюйма не используются, и соответствующие дисководы в базовой конфигурации персональных компьютеров после 1994 г. не поставляются.

Гибкие диски размером 3,5 дюйма выпускают с 1980г. В настоящее время стандартными считают диски размером 3,5 дюйма высокой плотности. Они имеют емкость 1,4 Мбайт и маркируются буквами HD (high density – высокая плотность).

Гибкие диски – ненадежные носители данных. Пыль, грязь, влага, температурные перепады и внешние электромагнитные поля могут стать причиной частичной или полной утраты записей, хранящихся на гибком диске. Поэтому использовать гибкие диски в качестве основного средства архивного хранения данных нельзя. Их в основном применяют только для транспортировки данных с одного компьютера на другой.

Дисковод компакт-дисков CD-ROM. В период 1994-1995гг. в базовую конфигурацию персональных компьютеров перестали включать дисководы гибких дисков диаметром 5,25 дюйма, но вместо них ввели накопители CD-ROM, имеющие такие же внешние размеры.

Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится на русский язык как постоянное
запоминающее устройство на основе компакт-диска. Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Цифровая запись на компакт-диске отличается очень высокой плотностью, и диск может хранить примерно 650 Мбайт данных.

Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относят к аппаратным средствам мультимедиа.

Основным недостатком стандартных дисководов CD-ROM является невозможность записи данных, но параллельно с ними существуют и устройства многократной записи CD-RW (Compact Disc Recorder-Writer).

Основным параметром дисководов CD-ROM является скорость чтения данных. За единицу измерения принята скорость чтения в первых серийных образцах, составляющая 150 Кбайт/с. В настоящее время наибольшее распространение имеют устройства чтения CD-ROM с производительностью 32х-48х (х – единица измерения скорости, равная 150 Кбайт/с). Современные образцы устройств однократной записи имеют производительность 4х-8х, а устройства многократной записи – до 4х.

Имя дисковода для чтения компакт-диска жестко не закреплено. При установке операционной системы дисководу присваивается имя D:, если винчестер не разбит на логические диски. Если винчестер разбит на несколько логических дисков, то в качестве имени дисководу присваивается латинская буква, следующая за буквой последнего имени логического диска. Например, если винчестер разбит на два диска C: и D:, то CD-ROM имеет имя E:.

Видеокарта (видеоадаптер). Все операции, связанные с построением изображения, выделены в отдельный блок, который называется видеоадаптером. Он выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы, и называется видеокартой. В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640 х 480, 800 х 600, 1024 х 768 точек и т.д.).

Звуковая карта. Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. Она подключается к одному из слотов материнской платы в виде дочерней платы и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки, подключаемые к выходу звуковой карты. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Монитор. Монитор (дисплей) – это устройство визуального представления данных. Его основными параметрами являются:

Размер экрана. Единица измерения – дюйм. Измеряется по диагонали. Стандартные размеры: 14″; 15″; 17″; 19″; 20″; 21″. В настоящее время наиболее распространенными являются мониторы размером 15 и 17 дюймов. Для операций с графикой наиболее распространены мониторы размером 19-21 дюйм.

Разрешение экрана. Чем разрешение экрана выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, соответственно, тем меньше видимый размер элементов изображения. Для каждого размера монитора существует свое оптимальное разрешение экрана, которое должен обеспечивать видеоадаптер.

Размер монитора

Оптимальное разрешение экрана

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *