Где заправлять авто на водороде
Где все машины на водороде?
Используя такое же топливо, что и космические двигатели, машины на водороде все еще остаются транспортом будущего.
Прямо сейчас вы можете сесть за руль автомобиля, который не сжигает ископаемое топливо и не выделяет парниковые газы, для движения использует такую же химическую реакцию, что и ракетные двигатели и может проехать в два раза больше, чем Тесла. Они называются автомобилями на водородных топливных элементах. Однако если живете не в Калифорнии, то на дорогах вы их, вряд ли, увидите.
В наши дни, в качестве альтернативы классическому ДВС, предлагают электромобиль. Однако как машины на водороде, однажды появившись, так и остались, довольно, непопулярной темой будущего, несмотря на то, что они имеют ряд преимуществ: меньший расход топлива и быстрая заправка. Так что же случилось?
Первое что вам нужно знать: машины на водороде- это электромобили. Мы привыкли думать, что машины на электротяге имеют только аккумулятор, например как Tesla или Nissan Leaf, однако это не совсем так. Несмотря на то, что водород является газообразным топливом, автомобили на топливных элементах имеют электрическую тягу. «Когда мы говорим об электромобилях, то под этим понятием мы подразумеваем обычные гибриды, гибриды с зарядкой от электросети, автомобили на аккумуляторах или на топливных элементах. В общем все то, что имеет электротягу.»- расскказывает Keith Wipke, работник национальной лаборатории возобновляемой энергии.
Но автомобили на топливных элементах совершенно другие, нежели автомобили на аккумуляторах. Например у Tesla Model S в полу располагается огромная батарея, которая хранит заряд электроэнергии. В автомобилях, использующие топливные элементы, электричество производиться под действием электрохимической реакции между топливом, в основном это водород, и кислородом из воздуха. В процессе данной реакции образуется электроэнергия и водяной пар, как побочный продукт. Именно такая реакция и позволяет приводить автомобиль в движение.
Такие танцы между химией и механикой подобны водородно- окислительной реакции в ракетных двигателях с одной лишь оговоркой, что вместо взрыва происходит вырабатывание электроэнергии. И в том и в другом случае, вырабатывается достаточное количество энергии, но без токсичных выбросов, что и делает топливные элементы такими хорошими источниками питания.
Один из способов получения водорода- электролиз. Пропустив электрический ток через воду, последнее будет разделяться на водород и кислород. Однако в промышленности водород получают из природного газа. Данный метод производства называется: паровая конверсия метана и природного газа. Водяной пар, смешиваясь с природным газом под высоким давлением и температурой образуют водород.
Данный процесс выделяет некоторое количество СО2, также и водородное топливо не состоит из 100% водорода, но тем не менее, при производстве количество выбросов, значительно, меньше, чем при сжигании твердых топлив.
В настоящее время, в штате Калифорния действует указ в котором говориться, что по меньшей мере, 33% от всего вырабатываемого водорода, должно производиться из возобновляемых источников.
Множество плюсов, но один минус
По мере того, как электрические машины захватывают мир и индустрия электрических автомобилей совершенствуется, тем не менее у водителей остаются две главные проблемы: во-первых, долгое время зарядки, а во- вторых, большинство электромобилей не смогут проехать и половины пути от того, которое сможет преодолеть авто на двс.
Топливные элементы могут решить данную проблему: водород можно закачать в бак, как газ. Вы можете также быстро заправиться, как бензином или дизелем. Дальность хода автомобиля на водороде такая же, как и на классическом топливе. К примеру Toyota Mirai имеет один из самых низких запасов хода и он составляет, примерно, 500 км на одном баке, когда Tesla Model 3 имеет запас хода на полной зарядке, примерно, 350 км.
«При заправке водородом движутся молекулы. Пока у вас достаточно давления и пути с низким сопротивлением, тогда молекулы движутся от станции к автомобилю очень быстро»
Именно в этом и скрывается небольшая разница между автомобилями на топливных элементах и электрических батареях. Автомобили на батареях известны своей высокой производительностью: недавно Tesla S установила новый рекорд в разгоне с 0- 100. По зверениям Стефана Эллиса, менеджера водородных автомобилей Хонда в Америке, авто на топливных элементах могут быть наравне: «Установите такой же двигатель в Хонду и результат будет аналогичным»- говорит он.
Однако, все эти приемущества имеют, довольно, высокую цену. Автомобиль Honda Clarity стоит в два раза дороже, чем аналогичный автомобиль на батареях. К счастью, эта стоимость включает в себя еще и водород, который стоит 14 долларов за килограмм. С точки зрения энергии, это эквивалентно 5,6 долларов за галлон (примерно 0,67 долларов за литр). Со временем стоимость таких автомобилей должна снижаться.
На данный момент невозможно заправиться где- нибудь вне Калифорнии. На данный момент в Калифорнии насчитывается 35 водородных заправочных станций. Большинство находиться в Лос- Анджелес.
Сейчас в Калифорнии строиться, примерно, одна водородная заправочная станция в месяц. К 2025 году планируется открыть 200 станций, однако это не идет ни в какое сравнение с количеством заправочных станций ископаемого топлива, примерно, 8500 и станций зарядок, примерно, 17000.
В России открылась первая водородная автозаправочная станция
В России в регулярном режиме эксплуатируется только один автомобиль на топливных элементах — Toyota Mirai энтузиаста Владимира Седова. Именно он приехал на первую коммерческую заправочную станцию — процесс пополнения запаса водорода занял 5-6 минут. До этого более полугода Владимир заправлял седан водородом своими силами — под подсчётам Седова, 100 километров пробега на Toyota Mirai обходятся в 250 рублей.
Владимир Седов заказал водородный Toyota Mirai в США. Автомобиль стоил 7 миллионов рублей.
Фото: Олег Егоров / vk.com
Под капотом Toyota Mirai первого поколения 153-сильный (335 Нм) двигатель, привод — на переднюю ось. Шасси унифицировано с Toyota Prius. Дорожный просвет не превышает 130 миллиметров. Седан весом 1855 килограммов тратит на разгон с места до 100 километров в час 9,5 секунды.
Заявленный запас хода водородомобиля Toyota Mirai — 480 километров, однако давления 500 атмосфер на подмосковной водородной АЗС не хватит, чтобы заполнить бак седана полностью — необходимо давление 700 атмосфер. Это значит, что автономность японского седана на топливных ячейках после заправки на российской АЗС немного снизится.
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
Плюсы водородного двигателя
Минусы водородного двигателя
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.
Почему водородные автомобили проигрывают электромобилям?
О том, как еще далек от нас водородный автомобиль
Водород (H2) – это химический элемент, самый легкий газ получаемый из углеводородов, биомассы, мусора. Водород используют в нефтепереработке для гидроочистки, гидрокрекинга, для производства аммиака, при гидрогенизации угля, нефти и как альтернативный источник топлива (электроэнергии) для автомобилей. В автомобили ставят топливные элементы вместо бензобака, и заправляют туда H2 под давлением. При нажатии на педаль газа, в воздухозаборник поступает кислород, который вступает в реакцию с водородным элементом, отчего вырабатывается электричество. Электричество раскручивает электромотор, автомобиль начинает движение.
H2 как альтернативное топливо
Чем интересен водород, как альтернативный источник топлива:
Преимущества водородных автомобилей над электромобилями:
Модели автомобилей на водороде
Выпускают ограниченной серией:
Испытывают:
Ограниченными сериями выпускаются BMW Hydrogen 7 и Mazda RX-8 hydrogen – двухтопливные модели использующие либо жидкий водород, хранящийся в баке при температуре не выше −253 °C, либо бензин. Принцип тот же, что и в автомобилях на газу. В отличие от FCEV двухтопливные модели выпускают вредные выхлопные газы, двигатели не такие мощные и быстрее изнашиваются.
На водородных топливных элементах (FCEV) конструируют спецтехнику: автобусы, погрузочно-разгрузочное оборудование (например, вилочные погрузчики), наземно-вспомогательное оборудование, средние и большие грузовики. Активно в этой сфере работает американская компания Plug Power Inc (PLUG). PLUG выпускает комплектующие для спецтехники на водороде. Недавно PLUG провела симпозиум, на котором заявила:
Honda огласила цель по поэтапному отказу от бензиновых двигателей в Северной Америке к 2040 году.
Daimler Trucks и Volvo стали партнерами в Европе, чтобы попытаться снизить себестоимость FCEV и сделать водород выгодным для дальних перевозок.
Водород и проблемы с экологией
Водород обилен в природе. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения.
При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные выбросы. При этом, сам автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.
СПОСОБЫ ДОБЫЧИ ВОДОРОДА
Паровой риформинг метана
Способ отделения водорода путем парового метанового риформинга применим к ископаемому топливу, например, к природному газу – его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики США утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем в бензиновых автомобилях. Производство реформированного водорода уже запущено на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.
Газификация биомассы
Водород также добывают из биомассы – сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс называемый газификация, биомассу помещают под воздействие температуры, пара, кислорода, чтобы образовать газ, который после обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов – готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.
Электролиз
Электролиз – процесс отделение водорода из воды электрическим током. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область – 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).
Солнечные водородные станции Honda используют энергию солнца и электролиз, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.
Планы компаний по развитию производства H2
В Токио, недалеко от Токийского залива, построили завод для получения водорода из сточных вод и мусора.
PowerTap планирует построить на водородных АЗС помещения с оборудованием для получения водорода из природного газа и городской воды. Оставшийся углерод будут улавливать, и хранить там же.
Ways2H Inc. огласила планы построить небольшие заводы по переработке водорода возле мусорных свалок. Формула успеха компании Ways2H Inc.: мусор + термохимический процесс = водород. Завод стандартного размера обрабатывает 24 тонны отходов в день, получая от 1 до 1,5 тонны водорода.
Сколько стоит производство водорода
На сколько экономней водородный автомобиль?
В Европе заправка полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 ₽ (717 ₽ за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 ₽ на 100 километров. Для сравнения, цена 95-го бензина в Европе равна 101 ₽, т.е. 10 л. бензина обойдется в 1010 ₽ или 6 060 ₽ за 600 километров [цены на 2018 год.] Из примера видим, что заправка водородного автомобиля в два раза дешевле, чем автомобиля с двигателем внутреннего сгорания.
В России активисты из г. Черноголовки Московской области, ради эксперимента сконструировали собственную водородную станцию, купили Toyota Mirai и посчитали, во сколько обойдется эксплуатация автомобиля. По расчетам владельца машины 100 километров на водороде ему обходится в 250 рублей.
Как заправляют топливные элементы водородом
В 1 килограмме газообразного водорода столько же энергии сколько в 1 галлоне бензина (4,5 литра = 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится в резервуарах высокого давления (топливных элементах) – 5000 или 10000 фунтов на квадратный дюйм (psi) (340 или 680 атмосфер), в виде сжатого газа. Водородные диспенсеры на заправках заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл-гидридом или низкотемпературными сорбционными материалами.
Как работает топливный элемент заполненный водородом
Прокачивая кислород и водород через катоды и аноды, контактирующие с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что увеличивает напряжение.
Ниже смотрите схему работы топливного элемента.
Где заправлять автомобили водородом?
Карта заправочных станций здесь.
Революция FCEV не начнется без достаточного количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как альтернативного вида топлива Развитие сетей водородных АЗС идет туго.
В Америке самый большой автопарк FCEV моделей, с концентрацией в штате Калифорния. Заправок там достаточно, но начались проблемы с поставкой водорода. Водители повально отказываются от водородных автомобилей, столкнувшись с пустыми заправками. Подробнее здесь.
Расходы на содержание водородных станций
Снижение стоимости водородных технологий за счет прогресса
Еще одно препятствие для производителей автомобилей на водородном топливе – цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Покупали когда-нибудь колечко из платины для любимой? Цена Вам известна.
Ученые из Лос-Аламосской национальной лаборатории доказали, что замена дорогой платины на более распространенные – железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины, заметно снизит себестоимость топливных элементов. Параллельно ученые пытаются снизить себестоимость производства аккумуляторов для электромобилей, подробней здесь.
На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы эффективней заправлять топливный элемент большим количеством H2. В связке с передовым литий-ионным аккумулятором как дополнительным хранилищем энергии, это увеличит количество энергии на борту автомобиля. «Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км.» считает доктор Герберт Колер, вице-президент Daimler AG.
Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 % за последние три года и на 80 % за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить еще в два раза. Нынешние водородные топливные элементы, «живут» около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно продлить их жизнь до 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.
Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, стоит отсутствие оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам. Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, поэтому и проблем с поставкой запчастей к ним нет. «Мы внедряем «водородную технологию» в люксовые автомобили и следим, как она себя показывают «в народе». Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.
В 2005 году канадский производитель протон-обменных топливных элементов, обещал, что к 2010 году будет продавать автокомпаниям от 200 000 до 500 000 топливных элементов в год. Цель так и не была достигнута, топливные элементы в таком количестве заводам были не нужны.
В 2009 году несколько производителей автомобилей подписали совместное письмо о намерениях к 2014 году продавать сотни тысяч автомобилей с водородным двигателем. Этого тоже не произошло.
Получит ли «водородная программа» поддержку государства
Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.
С министром энергетики Стивеном Чу, администрация Обамы не раз пыталась сократить финансирование программы развития водородных топливных элементов, но сокращения отменял конгресс.
Популярность электрических автомобилей сторонникам водорода кажется абсурдной. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель Honda. Аккумулятор, разработанный для Honda FCX, например, устанавливают и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии, возглавив список самых экономичных машин этого десятилетия».
Недовольны и те, кто платит из своего кармана за строительство новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородное топливо и не снизятся затраты на возобновляемые источники энергии.
Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro. SunHydro строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Инвесторы в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».
В России Правительство в 2020 году утвердило план по развитию водородной энергетики в Российской Федерации до 2024 года. В нем говорится: