Как доказать что функция не имеет предела
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.
Доказать НЕ существование пределов функций
Последний раз редактировалось Deggial 12.05.2013, 10:13, всего редактировалось 4 раз(а). |
формулы поправил |
Необходимо доказать, что предела не существует.
Заслуженный участник |
Последний раз редактировалось gris 11.01.2013, 19:26, всего редактировалось 2 раз(а).
Пределы удобнее записывыть так: .
Админ форума |
i | Тема перемещена из форума «Математика (общие вопросы)» в форум «Помогите решить / разобраться (М)» |
Последний раз редактировалось Gudsaf 11.01.2013, 18:48, всего редактировалось 1 раз.
Верно, во втором под знаком предела должно быть (простите, спешил).
Что можете ещё посоветовать в заданиях данного типа? Какие иные методы,
Заслуженный участник |
Последний раз редактировалось gris 11.01.2013, 19:25, всего редактировалось 3 раз(а).
Заслуженный участник |
Последний раз редактировалось gris 12.01.2013, 09:27, всего редактировалось 1 раз.
Заслуженный участник |
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей
Как доказать что предела не существует
Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.
Постоянное число а называется пределом последовательности n>, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству
Последовательность, имеющая предел, называется сходящейся, в противном случае — расходящейся.
Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.
Пусть дана функция f(x) и пусть a — предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.
Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности n> значений аргумента, стремящейся к а, соответствующие им последовательности n)> имеют один и тот же предел А.
Это определение называют определением предела функции по Гейне, или “на языке последовательностей”.
Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное, как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству
0 » 2.7 — основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.
Используются на практике и следствия формулы (6.11):
(6.12)
(6.13)
(6.14)
в частности предел,
Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→a и при этом x и называются соответственно предел справа и предел слева функции f(x) в точке а. Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы
. Функция f(x) называется непрерывной в точке x0, если предел
(6.15)
Условие (6.15) можно переписать в виде:
то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.
Если равенство (6.15) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.
Функция f(x) называется непрерывной справа в точке xo, если предел
и непрерывной слева в точке xo, если предел
Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.
Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.
1. Если предел существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.
Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.
Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.
Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода — в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:
100×(1 +1/10) 10 ≈ 259 (ден. ед.),
100×(1+1/100) 100 ≈ 270 (ден. ед.),
100×(1+1/1000) 1000 ≈271 (ден. ед.).
При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел
Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.
Пример 3.2. Найти предел последовательности, заданной общим членом .
Пример 3.3. . Найти
.
Решение.
Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.
Пример 3.4. Найти ().
Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:
Пример 3.6. Доказать, что предел не существует.
Решение. Пусть x1, x2. xn. — последовательность, для которой . Как ведет себя последовательность n)> = при различных xn→ ∞
Если xn= p n, то sin xn= sin ( p n) = 0 при всех n и предел Если же
xn=2 p n+ p /2, то sin xn= sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом,
не существует.
Пример 3.7 Найти предел
Пример 3.8. Вычислить предел .
Решение. Обозначим y=π-x. Тогда при x→π, y→0. Имеем:
sin 3x = sin 3(π-y) = sin(3π-3y) = sin 3y.
sin 4x = sin 4(π-y) = sin (π4-4y)= — sin 4y.
Предел
Пример 3.9. Найти предел .
Решение. Обозначим arcsin x=t. Тогда x=sin t и при x→0, t→0. .
Пример 3.10. Найти 1) ;
2) ;
3) .
1) Применяя теорему 1 предел разности и предел произведения, находим предел знаменателя: .
Предел знаменателя не равен нулю, поэтому, по теореме 1 предел частного, получаем:
.
2) Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для “раскрытия неопределенности” преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ≠ 2 равенство:
Так как предел , то, по теореме предел частного, найдем
3. Числитель и знаменатель при x &rarr ∞ являются бесконечно большими функциями. Поэтому теорема предел частного непосредственно не применима. Разделим числитель и знаменатель на x 2 и к полученной функции применим теорему предел частного:
.
Пример 3.11. Найти предел .
Решение. Здесь числитель и знаменатель стремятся к нулю:, x-9→0, т.е. имеем неопределенность вида
.
Преобразуем данную функцию, умножив числитель и знаменатель на неполный квадрат суммы выражения , получим
.
Пример 3.12. Найти предел .
Решение.
Пример 3.6. Доказать, что предел lim sin(x) при x-> ∞ не существует.
В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.
Понятие предела
Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.
Что такое предел функции
В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.
При x → ∞ предел функции f ( x ) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).
Решение
Далее мы запишем то же самое, но для бесконечно большой отрицательной последовательности.
Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:
Ответ: Верность данного в условии равенства подтверждена.
Решение
Мы видим, что данная последовательность бесконечно положительна, значит, f ( x ) = lim x → + ∞ e 1 10 x = + ∞
Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными – отрицательных.
Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.
Теперь сформулируем, что такое предел функции справа.
Теперь мы разъясним данные определения, записав решение конкретной задачи.
Докажите, что существует конечный предел функции f ( x ) = 1 6 ( x — 8 ) 2 — 8 в точке x 0 = 2 и вычислите его значение.
Решение
Значения функции в этой последовательности будут выглядеть так:
Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.
Предел функции
Понятие предела.
Важную роль в курсе математического анализа играет понятие предела, связанное с поведением функции в окрестности данной точки. Напомним, что \(\delta\) — окрестностью точки \(a\) называется интервал длины \(2\delta\) с центром в точке \(a\), то есть множество Исследуем функцию \(f(x)=\displaystyle \frac \(\triangle\) Функция \(f\) определена при всех \(x\in\mathbb Из этого рисунка видно, что значения функции близки к 2, если значения \(x\) близки к 1 (\(x\neq 1)\). Придадим этому утверждению точный смысл. Пусть задано любое число \(\varepsilon>0\) и требуется найти число \(\delta>0\) такое, что для всех \(x\) из проколотой \(\delta\)-окрестности точки \(x=1\) значения функции \(f(x)\) отличаются от числа 2 по абсолютной величине меньше, чем на \(\varepsilon\). Иначе говоря, нужно найти число \(\delta>0\) такое, чтобы для всех \(x\in\dot_<\delta>(a)\) соответствующие точки графика функции \(y=f(x)\) лежали в горизонтальной полосе, ограниченной прямыми \(y=2-\varepsilon\) и \(y=2+\varepsilon\) (см. рис. 10.1), то есть чтобы выполнялось условие \(f(x)\in U_<\varepsilon>(2)\). В данном примере можно взять \(\delta=\varepsilon\). В этом случае говорят, что функция \(f(x)\) стремится к двум при \(x\), стремящемся к единице, а число 2 называют пределом функции \(f(x)\) при \(x\rightarrow 1\) и пишут \(\displaystyle \lim \(\triangle\) Из графика этой функции (рис. 10.2) видно, что для любого \(\varepsilon>0\) можно найти \(\delta>0\) такое, что для всех \(x\in\dot_<\delta>(0)\) выполняется условие \(f(x)\in U_<\varepsilon>(1)\). В самом деле, прямые \(y=1+\varepsilon\) и \(y=1-\varepsilon\) пересекают график функции \(y=f(x)\) в точках, абсциссы которых равны \(x_<1>=-\varepsilon,\ x_2=\sqrt<\varepsilon>\). Пусть \(\delta\) — наименьшее из чисел \(|x_<1>|\) и \(x_2\), т.e. \(\displaystyle \delta=\min(\varepsilon,\sqrt<\varepsilon>)\). Тогда если \(|x| Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой окрестности точки \(a\), за исключением, быть может, самой точки \(a\), и для каждого \(\varepsilon>0\) найдется число \(\delta>0\) такое, что для всех \(x\), удовлетворяющих условию \(|x-a| 0\ \exists\delta>0:\ \forall x:0 0\ \exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow f(x)\in U_<\varepsilon>(A).\nonumber Таким образом, число \(A\) есть предел функции \(f(x)\) в точке \(a\), если для любой \(\varepsilon\)-окрестности числа \(A\) можно найти такую проколотую \(\delta\)-окрестность точки \(a\), что для всех \(x\), принадлежащих этой \(\delta\)-окрестности, соответствующие значения функции содержатся в \(\varepsilon\)-окрестности числа \(A\). В определении предела функции в точке \(a\) предполагается, что \(x\neq a\). Это требование связано с тем, что точка \(a\) может не принадлежать области определения функции. Отсутствие этого требования сделало бы невозможным использование предела для определения производной, так как производная функции \(f(x)\) в точке \(a\) — это предел функции Отметим еще, что число \(\delta\), фигурирующее в определении предела, зависит, вообще говоря, от \(\varepsilon\), то есть \(\delta=\delta(\varepsilon)\). Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой проколотой окрестности точки \(\alpha\), то есть \(\exists\delta_<0>>0:\ \dot_<\delta_<0>>(a)\subset D(f)\), и для любой последовательности \(\ Пользуясь определением предела по Гейне, доказать, что функция $$ \(\triangle\) Достаточно показать, что существуют последовательности \(\ Тогда \(\displaystyle \lim_ Если функция \(f\) определена в проколотой \(\delta_<0>\)-окрестности точки \(a\) и существуют число \(A\) и последовательность \(\ Так, например, для функции \(f(х)=\displaystyle \sin\frac<1> Определения предела функции по Коши и по Гейне эквиваленты. \(\circ\) В определениях предела функции \(f(x)\) по Коши и по Гейне предполагается, что функция \(f\) определена в некоторой проколотой окрестности точки \(a\), то есть существует число \(\delta_0>0\) такое, что \(\dot_<\delta_<0>>\in D(f)\). Пусть \(а\) — предельная точка числового множества \(E\), то есть такая точка, в любой окрестности которой содержится по крайней мере одна точка множества \(E\), отличная от \(a\). Тогда число \(A\) называют пределом по Коши функции \(f(x)\) в точке \(a\) по множеству \(E\) и обозначают \(\displaystyle \lim_ Число \(A\) называют пределом слева функции \(f(x)\) в точке a и обозначают \(\displaystyle \lim_ Отметим еще, что если Аналогично Аналогичный смысл имеют записи вида Например, Говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке бесконечный предел, и пишут \(\lim_ В этом случае функцию \(f(x)\) называют бесконечно большой при \(x\rightarrow a\). Например, если \(f(x)=1/x\), то \(\displaystyle \lim_ Аналогично говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке предел, равный \(+\infty\), и пишут \(\displaystyle \lim_ Если $$ то говорят, что число \(A\) есть предел функции \(f(x)\) при x, стремящемся к плюс бесконечности, и пишут \(\displaystyle \lim_ Например, если \(f(x)=\displaystyle\frac<3-2x> Если \(\forall\varepsilon>0 \ \exists\delta>0:\forall x\in U_<\delta>(-\infty)\rightarrow f(x)\in U_<\varepsilon>(A)\), то есть неравенство \(|f(x)-A| 0\ \exists\delta>0:\forall x\in U_<\delta>(\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber Точно так же вводится понятие бесконечного предела в бесконечности. Например,запись \(\displaystyle \lim_ Покажем, что функция, имеющая конечный предел в заданной точке, обладает некоторыми локальными свойствами, то есть свойствами, которые справедливы в окрестности этой точки. Если функция \(f(x)\) имеет предел в точке \(a\), то существует такая проколотая окрестность точки \(a\), в которой эта функция ограничена. \(\circ\) Пусть \(\displaystyle \lim_ Свойство сохранения знака предела. Если \(\displaystyle \lim_ \(\circ\) Согласно определению предела по заданному числу \(\varepsilon = \frac<|A|><2>>0\) можно найти такое число \(\delta>0\), что для всех \(x\in\dot_<\delta>(a)\) выполняется неравенство \(\displaystyle |f(x)-A| 0\), то из левого неравенства \eqref Если \(\displaystyle \lim_ \(\circ\) В силу определения предела по заданному числу \(\varepsilon=\frac<|B|><2>\) можно найти число \(\delta>0\), такое, что для всех \(x\in\dot_\delta(a)\) выполняется неравенство Если существует число \(\delta>0\) такое, что для всех \(\dot_<\delta>(a)\) выполняются неравенства \(\circ\) Воспользуемся определением предела функции по Гейне. Пусть \(\ Так как, согласно условию \eqref \(\circ\) Для доказательства этого свойства достаточно воспользоваться определением предела функции по Гейне и соответствующими свойствами пределов последовательностей. \(\bullet\) Бесконечно малые функции обладают следующими свойствами: Эти свойства легко доказать, используя определения бесконечно малой и ограниченной функции, либо с помощью определения предела функции по Гейне и свойств бесконечно малых последовательностей. Из свойства 2) следует, что произведение конечного числа бесконечно малых при \(x\rightarrow a\) функций есть бесконечно малая при \(x\rightarrow a\) функция. Из определения предела функции и определения бесконечно малой функции следует, что число \(A\) является пределом функции \(f(x)\) в точке \(a\) тогда и только тогда, когда эта функция представляется в виде Если функции \(f(x)\) и \(g(x)\) имеют конечные пределы в точке \(а\), причем \(\displaystyle \lim_ \(\circ\) Для доказательства этих свойств достаточно воспользоваться определением предела функции по Гейне и свойствами пределов последовательностей. \(\bullet\) Отметим частный случай утверждения \eqref Ранее мы уже ввели понятие монотонной функции. Докажем теорему о существовании односторонних пределов у монотонной функции. Если функция \(f\) определена и является монотонной на отрезке \([a,b]\), то в каждой точке \(x_<0>\in(a,b)\) эта функция имеет конечные пределы слева и справа, a в точках \(а\) и \(b\) — соответственно правый и левый пределы. \(\circ\) Пусть, например, функция \(f\) является возрастающей на отрезке \([a,b]\). Зафиксируем точку \(х_0\in\)(а, \(b\)]. Тогда В силу условия \eqref Если функция \(f\) определена и возрастает на отрезке \([a,b],\ x_<0>\in(a,b),\) то Теорема о пределе монотонной функции справедлива для любого конечного или бесконечного промежутка. При этом, если \(f\) — возрастающая функция, не ограниченная сверху на \((a,b)\), то \(\displaystyle \lim_ Будем говорить, что функция \(f(x)\) удовлетворяет в точке \(x=a\) условию Коши, если она определена в некоторой проколотой окрестности точки \(a\) и Пусть существует число \(\delta >0\) такое, что функция \(f(x)\) определена в проколотой \(\delta\) — окрестности точки \(a\), и пусть для каждой последовательности <\(x_n\)>, удовлетворяющей условию \(x_n\in\dot_<\delta>(a)\) при всех \(n\in\mathbb \(\circ\) Образуем последовательность Для того чтобы существовал конечный предел функции \(f(x)\) в точке \(x = a\) необходимо и достаточно, чтобы эта функция удовлетворяла в точке a условию Коши \eqref \(\circ\) Необходимость. Пусть \(\displaystyle \lim_ Теорема 3 остается в силе, если точку \(a\) заменить одним из символов \(a-0, a+0,-\infty, +\infty\); при этом условие \eqref
$$
U_<\delta>(a)=\Рис. 10.1
Два определения предела функции и их эквивалентность.
Определение предела по Коши.
$$
$$
F(x) = \frac
$$
которая не определена в точке \(a\).Определение предела по Гейне.
f(x)=\sin\frac<1>
$$
не имеет предела в точке \(x=0\).Рис. 10.3
Эквивалентность двух определений предела.
$$
\forall\varepsilon>0\quad \exists\delta>0:\quad\forall x\in \dot_<\delta>(a)\cap E\rightarrow|f(x)-A|Различные типы пределов.
Односторонние конечные пределы.
$$
\forall\varepsilon>0\quad\exists\delta>0:\quad\forall x\in(a-\delta,a)\rightarrow|f(x)-A_<1>| 0\quad\exists\delta>0:\ \forall x\in (a,a+\delta)\rightarrow|f(x)-A_2| 0,
\end
$$
график которой изображен на рис. 10.4 \(\displaystyle \lim_Рис. 10.4
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x)\in[A,A+\varepsilon),
$$
то есть значения функции лежат в правой \(\varepsilon\)-полуокрестности числа \(A\), то пишут \(\displaystyle \lim_
$$
\displaystyle \<\lim_
$$
Например, для функции
$$
\varphi (x)=\left\<\begin
1-x,\ если\ x 0,
\end
$$
график которой изображен на рис. 10.5, \(\displaystyle \lim_Рис. 10.5
$$
\lim_
$$
$$
\displaystyle \<\lim_
$$Бесконечные пределы в конечной точке.
$$
\forall\varepsilon>0\quad\exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow|f(x)|>\varepsilon.\label
$$Рис. 10.6
$$
\forall\varepsilon>0\quad\exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x) Рис. 10.7
Рис. 10.8
Предел в бесконечности.
\forall\varepsilon>0\exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber
$$
$$
то говорят, что число A есть предел функции f(x) при x, стремящемся к бесконечности, и пишут \(\displaystyle \lim_
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(-\infty).\nonumber
$$
Аналогично определяются бесконечные пределы при \(x\rightarrow\infty\) и \(x\rightarrow-\infty.\)Свойства пределов функций.
Локальные свойства функции, имеющей предел.
$$
f(x)>\frac<2>>0\ для\ x\in\dot_<\delta>(a).\nonumber
$$
Если \(A Свойство 3
$$
|g(x)-B| \frac<|B|><2>\),и поэтому \(\displaystyle \frac<1> <|g(x)|>Свойство 1
$$
g(x)\leq f(x)\leq h(x),\label
$$
и если
$$
\lim_
$$
то существует \(\displaystyle \lim_
$$
g(x_
$$
то в силу свойств пределов последовательностей \(\displaystyle \lim_
$$
f(x)=A+a(x),\nonumber
$$ где \(a(x)\) — бесконечно малая при \(x\rightarrow a\) функция.Свойства пределов, связанные с арифметическими операциями.
$$
\lim_
$$
то есть постоянный множитель можно вынести за знак предела.Пределы монотонных функций.
$$
\forall x\in[a,x_<0>)\rightarrow f(x)\leq f(x_<0>).\label
$$
$$
\sup_\in[a,\ x_<0>):M-\varepsilon 0\), так как \(x_\varepsilon 0\ \exists\delta>0:\forall x\in(x_<0>-\delta,x_<0>)\rightarrow f(x)\in(M-\varepsilon,M].\nonumber
$$
Согласно определению предела слева это означает, что существует
$$
\lim_
$$
Итак,
$$
f(x_<0>-0)=\sup_
$$
f(x_<0>-0) Замечание.Критерий Коши существования предела функции.
$$
\forall\varepsilon>0\quad \exists\delta=\delta(\varepsilon)>0:\ \forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)|
$$
\lim_
$$
и
$$
\lim_
$$
где \(\widetilde
$$
x_<1>,\widetilde
$$
и обозначим k-й член этой последовательности через \(y_
$$
\forall\varepsilon>0 \ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow|f(x)-A| 0\) можно найти число \(\delta=\delta_\varepsilon>0\) такое, что
$$
\forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)| 0,\) указанное в условии \eqref
$$
\forall n>N_<\varepsilon>\rightarrow 0 Замечание.