ΠΠ°ΠΊ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ ΠΏΡΡΠΌΠΎΠΉ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΊΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ
ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΌΡΡΡΡ Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠΌ Β«ΡΡΠ½ΠΊΡΠΈΡΒ» Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ Π² 7 ΠΊΠ»Π°ΡΡΠ΅, ΠΈ Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΡΡ, Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΌΠΎΠΉ ΡΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΡΡΡ Ρ Π½ΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½. Π, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΆΠ΅, ΡΡΠ»ΠΎΠΆΠ½ΡΡΡΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ. Π‘Π΅ΠΉΡΠ°Ρ Π΄Π°Π΄ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠ»ΡΡΠ΅Π²ΡΠΌ ΡΠ»ΠΎΠ²Π°ΠΌ ΠΈ Π±ΡΠ΄Π΅ΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ.
ΠΡΠ»ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x ΠΈΠ· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠ»ΠΎ y, Π·Π½Π°ΡΠΈΡ, Π½Π° ΡΡΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π·Π°Π΄Π°Π½Π° ΡΡΠ½ΠΊΡΠΈΡ. ΠΡΠΈ ΡΡΠΎΠΌ Ρ Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ, Π° Ρ β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ ΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡΡ. ΠΠ°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ°ΠΊ: y = f(x).
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°ΠΌΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄ΠΈΠ½ ΡΠ»Π΅ΠΌΠ΅Π½Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°.
ΠΠ· ΠΏΠΎΠ½ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° (ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x). ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ β ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡ ΠΡ .
ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π½Π° ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ β ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡ Πy.
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π·Π°ΠΏΠΈΡΡ D(f). ΠΡΠΈ ΡΡΠΎΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π΅ΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ . ΠΠΎΡΡΠΎΠΌΡ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΊΠΈΠ΅ Π·Π°ΠΏΠΈΡΠΈ: D(sin) β ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ½ΡΡ, D(arcsin) β ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π°ΡΠΊΡΠΈΠ½ΡΡ.
ΠΠΎΠΆΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ Π·Π°ΠΏΠΈΡΠ°ΡΡ D(f), Π³Π΄Π΅ f β ΡΡΠ½ΠΊΡΠΈΡ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ Π°ΡΠΊΡΠΈΠ½ΡΡΠ°. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΡ D(f) = X. Π’Π°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π°ΡΠΊΡΠΈΠ½ΡΡΠ° Π·Π°ΠΏΠΈΡΡ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ: D (arcsin) = [-1, 1].
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½ΠΎ ΡΠ°ΡΡΠΎ ΠΎΡΠ²Π΅Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΡΠ»ΠΈ ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΡΠΊΠ°Π·Π°ΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΈΡΠ΅Π», ΠΊΠΎΡΠΎΡΡΠ΅ Π»Π΅ΠΆΠ°Ρ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, ΡΠΎ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ°ΠΊ:
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΎΡ 2 Π΄ΠΎ 5 Π²ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎΠ»Ρ Π½Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΠΊΠΎΠ±ΠΊΠ° Π²ΠΎΠ·Π»Π΅ Π½Π΅Π³ΠΎ ΠΊΡΡΠ³Π»Π°Ρ.
ΠΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ β Π½Π΅ΠΎΡΡΠ΅ΠΌΠ»Π΅ΠΌΠ°Ρ ΡΠ°ΡΡΡ ΡΠ°ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΌΡ Π²Π²ΠΎΠ΄ΠΈΠΌ ΠΊΠ°ΠΊΡΡ-Π»ΠΈΠ±ΠΎ ΡΡΠ½ΠΊΡΠΈΡ, ΡΠΎ ΡΡΠ°Π·Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ Π΅Π΅ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΠ° ΡΡΠΎΠΊΠ°Ρ Π°Π»Π³Π΅Π±ΡΡ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π·Π½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ: ΠΏΡΡΠΌΠ°Ρ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡ, Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΡΡΠ½ΠΊΡΠΈΡ y = x2 ΠΈ Π΄ΡΡΠ³ΠΈΠ΅. Π ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ°Π΅ΠΌ, ΠΊΠ°ΠΊ ΡΠ²ΠΎΠΉΡΡΠ²Π°.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = C, ΡΠΎ Π΅ΡΡΡ f(x) = C, Π³Π΄Π΅ C β Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΠ΅ Π΅ΡΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°.
Π‘ΠΌΡΡΠ» ΡΡΠ½ΠΊΡΠΈΠΈ β Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°Π²Π½ΠΎ C. ΠΠΎΡΡΠΎΠΌΡ, ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» R.
ΠΠΎΠ½ΡΡΠ°Π½ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ°ΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΊΠΎΡΠ½Π΅ΠΌ
Π€ΡΠ½ΠΊΡΠΈΡ Ρ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΠΊ: y = n βx, Π³Π΄Π΅ n β Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π΅ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ:
ΠΠ½Π°ΡΠΈΡ, ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΉ y = βx, y = 4 βx, y = 6 βx,β¦ Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ [0, +β). Π ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ y = 3 βx, y = 5 βx, y = 7 βx,β¦ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ (ββ, +β).
ΠΡΠΈΠΌΠ΅Ρ
ΠΠ°ΠΉΡΠΈ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ΄ΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ, ΡΠΎ ΡΠ΅ΡΠΈΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ x 2 + 4x + 3 > 0.
Π Π°Π·Π»ΠΎΠΆΠΈΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΡΠ΅ΠΌ ΠΊΠΎΡΠ½ΠΈ:
ΠΠ½Π°ΡΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° a(x) = x 2 + 4x + 3 ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Π°Π±ΡΡΠΈΡΡ Π² Π΄Π²ΡΡ ΡΠΎΡΠΊΠ°Ρ . Π§Π°ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π° Π½ΠΈΠΆΠ΅ ΠΎΡΠΈ (Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ x 2 + 4x + 3 2 + 4x + 3 > 0).
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΡΠΈΡΠ»ΠΈΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ².
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ R.
ΠΡΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ (ββ, +β).
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: y = logax, Π³Π΄Π΅ Π³Π΄Π΅ ΡΠΈΡΠ»ΠΎ a > 0 ΠΈ a β 1. ΠΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π²ΡΠ΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π».
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ»ΠΈ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ
ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠ΅Π». Π’ΠΎ Π΅ΡΡΡ, D (loga) = (0, +β).
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ (0, +β).
ΠΡΠΈΠΌΠ΅Ρ
Π£ΠΊΠ°ΠΆΠΈΡΠ΅, ΠΊΠ°ΠΊΠΎΠ²Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
Π‘ΠΎΡΡΠ°Π²ΠΈΠΌ ΠΈ ΡΠ΅ΡΠΈΠΌ ΡΠΈΡΡΠ΅ΠΌΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘Π½Π°ΡΠ°Π»Π° Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π²Π°ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΊΠ°ΠΊ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΠΈΡ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΠΎΡΡΠΎΠΌΡ, Π΅ΡΠ»ΠΈ x β Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ, ΡΠΎ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΎΡΡΠΎΡΡ ΠΈΠ· Π²ΡΠ΅Ρ
ΡΠ°ΠΊΠΈΡ
ΡΠΈΡΠ΅Π» x, ΡΡΠΎ ΠΈ x β r, x β Οk, k β Z ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
ΠΡΠΈΠΌΠ΅Ρ
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) = tg2x.
Π’Π°ΠΊ ΠΊΠ°ΠΊ a(x) = 2x, ΡΠΎ Π² ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ Π²ΠΎΠΉΠ΄ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΡΠΊΠΈ:
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ 2 ΠΈΠ· Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ:
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ . ΠΡΡΠ°Π·ΠΈΠΌ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ:
ΠΡΠ²Π΅Ρ: ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ: .
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ: Π°ΡΠΊΡΠΈΠ½ΡΡ, Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ, Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ ΠΈ Π°ΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ Π°ΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° β Π²ΡΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» R. Π’ΠΎ Π΅ΡΡΡ, D(arctg) = R ΠΈ D(arcctg) = R.
Π’Π°Π±Π»ΠΈΡΠ° ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΡΠ°Π±Π»ΠΈΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π° ΡΡΠΎΠΊΠ°Ρ , ΡΡΠΎΠ±Ρ Π±ΡΡΡΡΠ΅Π΅ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ.
Π, ΠΏΠΎΠΌΠ½ΠΈΡΠ΅: ΡΠ΅ΠΌ ΡΠ°ΡΠ΅ Π²Ρ ΠΏΡΠ°ΠΊΡΠΈΠΊΡΠ΅ΡΠ΅ΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ β ΡΠ΅ΠΌ Π±ΡΡΡΡΠ΅Π΅ Π²ΡΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅, Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½ΡΠ»ΠΈ, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°.
ΡΠ΅ΠΎΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 📈 ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· Π½Π°Ρ Π²ΡΡΡΠ΅ΡΠ°Π»ΡΡ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ Π½Π° ΡΡΠΎΠΊΠ°Ρ , ΡΠ°ΠΊ ΠΈ Π² ΠΆΠΈΠ·Π½ΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π²ΠΎΠ·Π΄ΡΡ Π° Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π²ΠΎΠ·Π΄ΡΡ Π° Π±ΡΠ»Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Ρ 0 ΡΠ°ΡΠΎΠ² Π΄ΠΎ 6 ΡΠ°ΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Ρ 20 Π΄ΠΎ 24 ΡΠ°ΡΠΎΠ². ΠΡΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΠΏΠΎΠ²ΡΡΠ°Π»Π°ΡΡ Π΄ΠΎ 14 ΡΠ°ΡΠΎΠ², Π° Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΠ½ΠΈΠΆΠ°Π»Π°ΡΡ. Π’ΠΎ Π΅ΡΡΡ ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΌΡ ΡΠΌΠΎΠ³Π»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π²ΠΎΠ·Π΄ΡΡ Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΡΠΎΠΊ.
ΠΡΡΠ°Π½ΠΎΠ²ΠΈΠΌΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΡΠ»Ρ. ΠΡΠ»ΠΈ ΡΠΌΠΎΡΡΠ΅ΡΡ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅, ΡΠΎ Π±Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ, Π³Π΄Π΅ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Ρ .
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ½ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Ρ
ΠΏΡΠΈ Ρ
=-1; Ρ
=4; Ρ
=6. ΠΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅!
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΎ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°. ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ Ρ=k/x, Π³Π΄Π΅ Ρ Π½Π΅ ΡΠ°Π²Π½ΠΎΠ΅ 0 ΡΠΈΡΠ»ΠΎ.
Π°) ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π² Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΡΠΈΡΠ»ΠΎ 0, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ Ρ (Ρ ;0). ΠΠ°ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ . ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ 0 = β11Ρ +12. Π Π΅ΡΠ°Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ, Π² Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ, ΠΌΠ΅Π½ΡΡ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ: 11Ρ =22
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ Ρ , ΡΠ°Π·Π΄Π΅Π»ΠΈΠ² 22 Π½Π° 11: Ρ =22:11
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ Π½Π°ΡΠ»ΠΈ Π½ΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ: Ρ =2
ΠΡΠΈΠΌΠ΅Ρ β2. ΠΠ°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=f(x) ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ.
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ Ρ ΠΈ Π²ΡΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ . ΠΡΠΎ (-4,9); (-1,2); 2,2 ΠΈ 5,7. Π£ Π½Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΎΡ ΡΠ°Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ (ΡΠΎ Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π»ΠΈΠ±ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅), Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°ΠΌΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°.
ΠΡΠΈΠΌΠ΅Ρ β3. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [-2; 10] Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=f(x).
Π€ΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ (-1; 3) ΠΈ (8; 10]. ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π»ΠΈΠ½ΠΈΠΈ ΡΠΈΠ½Π΅Π³ΠΎ ΡΠ²Π΅ΡΠ°.
ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠ³ΡΡ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ. ΠΡΠΎ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ . Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎ ΡΠΈΡΡΠ½ΠΊΡ.
ΠΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΎΡ 2 Π΄ΠΎ 5. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ° ΡΠ°ΡΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½Π° Π·Π΅Π»Π΅Π½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. Π‘Π»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ ΡΡΠ° ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΈΠ΄Π΅Ρ Π²Π½ΠΈΠ·. Π’ΠΎ Π΅ΡΡΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [2;5] ΡΡΠ½ΠΊΡΠΈΡ Ρ=f(x) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠ΅ΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π΅ΡΠ»ΠΈ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ; ΡΡΠ½ΠΊΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π΅ΡΠ»ΠΈ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 9 ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ
Π 2022 Π³ΠΎΠ΄Ρ Π² Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ ΠΠΠ ΠΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΠΏΠΎΡΠ²ΠΈΠ»Π°ΡΡ Π·Π°Π΄Π°Π½ΠΈΠ΅ β9 ΠΏΠΎ ΡΠ΅ΠΌΠ΅ Β«ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉΒ». ΠΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ Π΅Π³ΠΎ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π΄Π»Ρ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ.
ΠΠ°ΠΊ ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π·Π°Π΄Π°Π½ΠΈΠ΅ 9 ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅? ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π°Π΅ΡΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΠΈ, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π² Π΅Π΅ ΡΠΎΡΠΌΡΠ»Π΅. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ β Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ.
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΡΠΎ Π·Π°Π΄Π°Π½ΠΈΠ΅, Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΡΡ ΠΈ ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°Π΄ΠΎ ΡΠΌΠ΅ΡΡ ΡΠΈΡΠ°ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΈΠ· Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊΡ.
ΠΠΎΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΡ β9 ΠΠΠ.
ΠΠ°, ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π·Π΄Π΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ. ΠΠΎ ΠΎΠ½ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌ β ΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΡ 9 ΠΠΠ, ΠΈ Π΄Π»Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΡΠ΅ΠΌΡ Β«ΠΠ°Π΄Π°ΡΠΈ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈΒ», Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅ Π²ΡΠ·Π°.
Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ:
ΠΡΠΎΠ²Π΅ΡΡ ΡΠ΅Π±Ρ: ΠΊΠ°ΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΡΠΎΠ±Ρ ΡΠ΄Π²ΠΈΠ½ΡΡΡ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ ΠΈΠ»ΠΈ ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ, ΡΠ°ΡΡΡΠ½ΡΡΡ, ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΡ?
Π Π°Π·Π±ΠΈΡΠ°Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ, ΠΎΠ±ΡΠ°ΡΠ°ΠΉ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠΎ, ΠΊΠ°ΠΊ ΠΌΡ ΠΈΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’Π°ΠΊΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΎΡΠΎΡΠΌΠ»Π΅Π½ΠΈΡ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ Π² Π·Π°Π΄Π°ΡΠ°Ρ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ.
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 9 Π² ΡΠΎΡΠΌΠ°ΡΠ΅ ΠΠΠ-2021
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠ΅:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
2. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ².
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠ΅.
ΠΡΡΠΌΠ°Ρ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΡΡ . ΠΡΠ° ΡΠΎΡΠΊΠ° Π»Π΅ΠΆΠΈΡ Π½Π° ΠΎΠ±Π΅ΠΈΡ ΠΏΡΡΠΌΡΡ , ΠΏΠΎΡΡΠΎΠΌΡ:
3. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ².
ΠΠ»Ρ ΠΏΡΡΠΌΠΎΠΉ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π²ΡΡΠ΅, ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½
ΠΡΠ° ΠΏΡΡΠΌΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ (-2; 4), ΠΏΠΎΡΡΠΎΠΌΡ: ΡΡΠ° ΠΏΡΡΠΌΠ°Ρ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ
ΠΠ»Ρ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΡΡ :
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ
4. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ b.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ β ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π½Π° 1 Π²ΠΏΡΠ°Π²ΠΎ, ΡΠΎ Π΅ΡΡΡ
6. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅
Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
7. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ Π² ΡΠΎΡΠΊΠ°Ρ Π ΠΈ Π. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ Π.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ B. ΠΠ»Ρ ΡΠΎΡΠ΅ΠΊ A ΠΈ B:
(ΡΡΠΎ Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΡΠΊΠΈ A) ΠΈΠ»ΠΈ (ΡΡΠΎ Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΡΠΊΠΈ B).
Π‘ΡΠ΅ΠΏΠ΅Π½Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ (2; 1); Π·Π½Π°ΡΠΈΡ,
ΠΠ»Ρ ΡΠΎΡΠ΅ΠΊ A ΠΈ B ΠΈΠΌΠ΅Π΅ΠΌ:
ΠΡΡΡΠ΄Π° (Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΡΠΊΠΈ A) ΠΈΠ»ΠΈ (Π°Π±ΡΡΠΈΡΡΠ° ΡΠΎΡΠΊΠΈ B).
Π€ΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π½Π° ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ (4; 5); Π·Π½Π°ΡΠΈΡ,
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ
11. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ (-3; 1) ΠΈ (1; 4). ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² ΠΏΠΎ ΠΎΡΠ΅ΡΠ΅Π΄ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠΎΠ΄Π΅Π»ΠΈΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΎ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ
ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ
13. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ (-3; 1) ΠΈ (-1; 2). ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΏΠΎ ΠΎΡΠ΅ΡΠ΅Π΄ΠΈ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅:
ΠΈΠ»ΠΈ β Π½Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ (ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°).
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ
15. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°ΠΉΠ΄ΠΈΡΠ΅
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΄Π²ΠΈΠ½ΡΡ Π½Π° 1,5 Π²Π²Π΅ΡΡ ; ΠΠ½Π°ΡΠΈΡ, ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° (Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ).
16. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ β Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π’Π°ΠΊ ΠΊΠ°ΠΊ
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ A ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ.
17. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = f(x). ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
Π€ΡΠ½ΠΊΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ, Π½ΠΎ ΠΈ Π½Π΅ΡΠ΅ΡΠ½Π°Ρ, ΠΈ Π΅ΡΠ»ΠΈ ΡΠΎ
ΠΡΡΠ·ΡΡ, ΠΌΡ Π½Π°Π΄Π΅Π΅ΠΌΡΡ, ΡΡΠΎ Π½Π° ΡΡΠΎΠΊΠ°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Π² ΡΠΊΠΎΠ»Π΅ Π²Ρ ΡΠ΅ΡΠ°Π΅ΡΠ΅ ΡΠ°ΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ. ΠΠ»Ρ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΡ Β«Π€ΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈΒ» (Π·Π°Π΄Π°Π½ΠΈΠ΅ 9 ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅), Π° ΡΠ°ΠΊΠΆΠ΅ Π·Π°Π΄Π°Ρ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅ΠΌ ΠΠΠ β ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌ ΠΠ½Π»Π°ΠΉΠ½-ΠΊΡΡΡ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ ΠΠΠ Π½Π° 100 Π±Π°Π»Π»ΠΎΠ².
ΠΡΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ
Π Π½Π°ΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ Π²ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΡΠ΅ΠΎΡΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΡ β9 ΠΠΠ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ Β«ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉΒ». ΠΡΠΎ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ²ΠΈΠ»ΠΎΡΡ Π² 2022 Π³ΠΎΠ΄Ρ Π² Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ ΠΠΠ ΠΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ.