Коэффициент температурной чувствительности термистора что это
8.1.2. Характеристики и параметры термисторов прямого подогрева
Температурная характеристика термистора – это зависимость его сопротивления от температуры (рис. 8.1).
Номинальное сопротивление термистора – это его сопротивление при определенной температуре (обычно 20 °С). Термисторы изготавливают с допустимым отклонением от номинального сопротивления (20; 10; 5) %. Номинальные сопротивления различных типов термисторов имеют значения от нескольких ом до нескольких сотен килоом.
Коэффициент температурной чувствительности (В) – это коэффициент в показателе экспоненты температурной характеристики термистора (8.1). Значение этого коэффициента, зависящее от свойств материала термистора, практически постоянно для данного термистора в рабочем диапазоне температур, и для различных
типов термисторов находится в пределах от 700 до 15 000 К. Коэффициент температурной чувствительности может быть найден экспериментально путем измерения сопротивлений термистора при температурах То и Т по формуле:
Температурный коэффициент сопротивления термистора – это величина, равная отношению относительного изменения сопротивления термистора к изменению его температуры:
Температурный коэффициент сопротивления зависит от температуры, поэтому его необходимо записывать с индексом, указывающим температуру, при которой он измеряется. Зависимость температурного коэффициента сопротивления от температуры можно получить, использовав уравнения (8.4) и (8.1):
Коэффициент рассеяния термистора (Н) численно равен мощности, рассеиваемой термистором при разности температур термистора и окружающей среды в 1 К, или, другими словами, численно равен мощности, которую надо выделить в термисторе, чтобы нагреть его на 1 К.
Статическая ВАХ термистора – это зависимость падения напряжения на термисторе от проходящего через него тока в условиях теплового равновесия между термистором и окружающей средой (рис. 8.2).
Линейность характеристик (рис. 8.2) при малых токах и напряжениях объясняется тем, что выделяемая в термисторе мощность недостаточна для существенного изменения его температуры. При увеличении тока, проходящего через термистор, выделяемая в нем мощность повышает его температуру. Таким образом, сопротивление термистора зависит от суммарной температуры (температуры окружающей среды и температуры перегрева термистора). При повышенных токах сопротивление термистора уменьшается с увеличением тока и температуры в соответствии с уравнением (8.1), линейность статической ВАХ нарушается. При дальнейшем увеличении тока и большой температурной чувствительности термистора может наблюдаться падающий участок статической ВАХ, т.е. уменьшение напряжения на термисторе с увеличением проходящего через него тока.
Максимально допустимая температура термистора – это температура, при которой еще не происходит необратимых изменений параметров и характеристик термистора. Максимально допустимая температура зависит не только от свойств исходных материалов термистора, но и от его конструктивных особенностей.
Максимально допустимая мощность рассеяния термистора – это мощность, при которой термистор, находящийся в спокойном воздухе при температуре 20 °С, разогревается при прохождении тока до максимально допустимой температуры. При уменьшении температуры окружающего воздуха, а также при работе термистора в сре
дах, обеспечивающих лучший теплоотвод, мощность рассеяния может превышать максимально допустимое значение.
Коэффициент энергетической чувствительности термистора (G)
численно равен мощности, которую необходимо подвести к термистору для уменьшения его сопротивления на 1 %. Между коэффициентом энергетической чувствительности, коэффициентом рассеяния и температурным коэффициентом сопротивления существует зависимость, которая описывается соотношением:
Значение коэффициента энергетической чувствительности зависит от режима работы термистора, т.е. оно различно в каждой точке статической ВАХ.
Постоянная времени термистора – это время, в течение которого температура термистора уменьшится на 63 % (в е раз) по отношению к разности температур термистора и окружающей среды (например, при переносе термистора из воздушной среды с температурой 120 °С в воздушную среду с температурой 20°С). Тепловая инерционность термистора, характеризуемая его постоянной времени, зависит от конструкции и размеров термистора, а также от теплопроводности среды, в которой находится термистор. Для разных типов термисторов постоянная времени лежит в пределах от 0,5 до 140 с.
Измерение температуры при помощи NTC термистора и микроконтроллера AVR
Автор: Погребняк Дмитрий
Click here to read this article in English.
Одним из вариантов для измерения температуры является использование термисторов. Среди преимуществ термистора можно выделить большое значение температурного коэффициента, то есть значительное изменение сопротивления в зависимости от температуры (порядка 2-10% на Кельвин). Термисторы бывают двух типов: с положительным температурным коэффициентом (PTC, Positive Temperature Coefficient), то есть увеличивающие своё сопротивление с увеличением температуры, и с отрицательным (NTC, Negative Temperature Coefficient) – уменьшающие сопротивление с возрастанием температуры. Речь в данной статье пойдёт про вторые, и про их использования для измерения температуры в сочетании с микроконтроллерами AVR
Характеристика NTC термистора
Термисторы характеризуются рядом параметров, такими, как максимальный допустимый ток, точность, сопротивление при определённой температуре (как правило, при 25°С). Одним из параметров, характеризующим степень изменения сопротивления в зависимости от температуры является коэффициент температурной чувствительности, обозначаемый B. Этот коэффициент рассчитывается на основе значений сопротивления при двух конкретных значениях температур. Во многих случаях этими температурами выбираются 25°С и 100°С. Обычно температуры, использованные при вычислении коэффициента указываются после буквы, например B25/100. Коэффициент B измеряется в Кельвинах и вычисляется по следующей формуле:
Из этой формулы следуют и обратные:
Вычисление температуры
Производители термисторов, как правило, приводят таблицы показывающие изменение сопротивления в зависимости от температур. Значения в этих таблицах также привязаны к сетке температур с некоторым шагом (например, 5°C). Используя формулы [1] и [2] можно с достаточной точностью интерполировать табличные значения.
Схемы подключения
Подключение термистора
Схема A |
Схема B |
Схема C |
Схема D |
Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.
Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U0 = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.
Схема B призвана ограничить мощность, рассеиваемую на термисторе.
Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U0.
Подключение к АЦП микроконтроллера ATmega
Подключение АЦП микроконтроллеров ATmega |
У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.
Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.
Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.
Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.
Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.
Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.
Расчёт таблицы значений
Вашему вниманию предлагаю скрипт для онлайн расчёта таблицы значений АЦП.
Расчёт значений ведётся либо по двум значениям температур и сопротивлений, либо вводится списком, либо используется одна из предзагруженных R/T характеристик. В настоящее время загружены R/T характеристики термисторов фирмы Siemens/EPCOS. Выберите подходящую из списка.
Загруженные характеристики даны с шагом 5°С, при выборе меньшего шага сетки, значения получаются путём интерполяции по формулам [1] и [2] двух ближайших значений из таблицы.
При построении таблицы автоматически соответствующим образом обновляется пример исходного кода под ней.
Внимание! Так как параметры термисторов в значительной мере нелинейны, расчёт по двум значениям сопротивлений, либо по значению и коэффициенту будет очень приблизительным. Вычисленное значение температуры при измерении высоких, или низких температур в таком случае может значительно (на десятки градусов) отличаться от актуальной.
Чтобы узнать подходящий тип R/T характеристики для вашего термистора, скачайте документацию, данную заводом изготовителем.
Сводная таблица для некоторых моделей термисторов Siemens/Epcos приведена ниже. Нажмите на код R/T характеристики, чтобы подгрузить параметры в форму ниже:
Форма для он-лайн расчёта значений АЦП
Данные для таблицы |