Коэффициент трансформации счетчика электроэнергии что это
Определение коэффициента трансформации счетчика электроэнергии
На крупных зданиях и объектах устанавливают специальные механизмы контроля электричества, которые рассчитаны на объемные показатели токов (свыше 100А). Поэтому есть необходимость установки понижающих трансформаторов. Для корректного снятия показаний со всех устройств нужен расчетный коэффициент учета электроэнергии.
Что такое коэффициент трансформации
Коэффициент может быть указан на специальной бирке, размещенной на корпусе счетчика или клеммной крышке
Коэффициент трансформации счетчика электроэнергии – это параметр технического назначения, который определяет точность показаний устройств учета потребляемой энергии.
Электросчетчики крупных объектов (промышленных, торговых, иных) не подключаются к общедомовой сети напрямую, потому что классические приборы не дают нужного уровня напряжения. Чтобы снизить вероятность поломки, необходимо снижать данные мощности на вход через установленные трансформаторы.
Расчетный коэффициент учета электроэнергии – это показатель, отражающий соотношение силы тока и данных счетчиков. При большом объеме потребляемого электричества приборы не отражают действительного количества, поэтому применяется дополнительный расчет. Цифра коэффициента – выше единицы на несколько пунктов. При умножении получается значение фактически потребленной электроэнергии.
Еще один момент – уровень трансформатора по погрешности. Счетчики энергии соответствуют 0,5 или 0,2. Чем выше значение, тем менее точные данные показывают устройства.
Формула для определения КТ
Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.
Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.
Общая формула следующая:
где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).
Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:
где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.
Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.
Коэффициент трансформации (учета) электросчетчика – это величина, на которую умножают показатели счетчиков, чтобы получить более корректные данные. Например, для домашних сетей – 20 единиц. Если использовать коэффициент и цифры с экрана счетчика, можно получить количество реально потребленной энергии.
Разновидности приборов учета электроэнергии
Устройства для подсчета электроэнергии – это многофункциональные механизмы, которые могут отражать текущее положение данных, сохранять и передавать важную информацию. На сегодняшний день используют три разных варианта счетных механизмов.
Механические или индукционные приборы учета
Однофазные индукционные счетчики электроэнергии
Классический тип устройств, который встречается чаще всего. Конструкция состоит из двух обычных катушек. Одна из них ограничивает данные переменного напряжения, предотвращая искажения и получая электрический ток. Вторая преобразует поток переменного напряжения.
Основные плюсы – простота в эксплуатации, долговечность устройств. Срок службы счетчиков подобного типа высокий, а стоимость – низкая. Минус – габариты механизма.
Механические приборы имеют большую погрешность, которая сильно заметна при использовании в сетях с невысоким напряжением.
Электронные приборы учета
Модульный трехфазный электронный электросчетчик
Устройства имеют более высокий уровень точности в подсчетах, но и цена их выше. Дополнительный плюс – возможность функционировать в нескольких режимах (например, утро и ночь, двух- и трехтарифные приборы).
Электронные счетчики преобразуют входящие аналоговые показатели в специальную цифровую кодировку, которые в свою очередь преобразуются небольшим микроконтроллером. Полученные данные можно увидеть на дисплее. Такие приборы стараются устанавливать все чаще, заменяя устаревшие механические модели.
Другие преимущества – компактный размер, возможность дистанционного контроля.
Гибридные приборы учета
Являются средним вариантом между счетчика электронного и механического типа работы. С одной стороны – устройства оснащают цифровым дисплеем для удобства. С другой – используют классический индукционный способ получения и обработки данных.
Гибридные устройства устанавливают редко, предпочитая аналоговые или электронные механизмы.
Полезные рекомендации
Электросчетчики позволяют посмотреть количество потребляемой энергии, чтобы адекватно оценить расход и посчитать итоговую оплату. Устройства различаются по классу точности, мощности, степени допустимой погрешности. Чтобы получить точные данные, снимают показания, с помощью коэффициента и калькулятора вычисляют фактическое потребление.
Для жилых домов в городской зоне и поселках используют небольшие устройства – однофазные счетчики (например, Меркурий 230 ART-03 CN, производство г. Москва) или многотарифные приборы, подходящие для сети в 220 Вольт или 120 Ампер.
Важно, чтобы каждое новое устройство имело пломбу проверки государственного образца. Без этого показания электросчетчика не будут считаться достоверными, и приниматься контролирующими органами. Выбирать подходящий счетчик и высчитывать фактические показатели можно самостоятельно или через контролеров.
Коэффициент трансформации счетчика электроэнергии
Разберемся, что такое, коэффициент трансформации. По сути это техническая величина. Все дело в следующем. В целях учета электроэнергии, потребленной крупным объектом (вроде жилой многоэтажки), появляется необходимость использования специализированного оборудования, понижающего мощность напряжения, передаваемого на контакты общедомового счетчика.
Эти приборы учета не соединяют, непосредственно с электрической сетью дома, в связи с невозможностью подключения большой мощности напряжения, через традиционный счетчик прямого включения (они не работают с большими токами).
Для того, чтобы не допустить выхода из строя счетчика, нужно уменьшить мощность подаваемого напряжения.
Для этих целей используют трансформаторы, их подбирают исходя из требуемого уровня нагрузки.
Коэффициент трансформации счетчика электроэнергии, изменяется в зависимости от смонтированного оборудования. Таким образом, прибор учета электроэнергии, работающий в паре с трансформатором, считывает нагрузку, пониженную в 30, 40 или 60 раз. Проще говоря, эти цифры и представляют собой коэффициенты трансформации.
Как определить коэффициент трансформации?
Часто бывает так, что на приобретенном трансформаторе, невозможно найти нужной информации, в частности данных, об уровне преобразования, подаваемого на него напряжения. Эта информация важна для выбора прибора учета электроэнергии. Обладая данными о коэффициенте трансформации используемого оборудования, можно понять, во сколько раз снижена электрическая нагрузка. Узнать эти показатели, можно проведя определенные расчеты.
Для этого, вам понадобиться выяснить уровень напряжения на вторичной обмотке. Далее цифры показателей тока, на первичной обмотке, делят на полученное значение (данные на вторичной обмотке). Таким образом, вы узнаете нужный вам коэффициент, для прибора учета электроэнергии.
Расчетный коэффициент учета, что это такое?
Разновидности приборов учета электроэнергии
Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.
На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).
Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.
В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.
Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.
Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.
Определение коэффициента трансформации счетчика электроэнергии
Разберемся, что такое, коэффициент трансформации. По сути это техническая величина. Все дело в следующем. В целях учета электроэнергии, потребленной крупным объектом (вроде жилой многоэтажки), появляется необходимость использования специализированного оборудования, понижающего мощность напряжения, передаваемого на контакты общедомового счетчика.
Эти приборы учета не соединяют, непосредственно с электрической сетью дома, в связи с невозможностью подключения большой мощности напряжения, через традиционный счетчик прямого включения (они не работают с большими токами).
Для того, чтобы не допустить выхода из строя счетчика, нужно уменьшить мощность подаваемого напряжения.
Для этих целей используют трансформаторы, их подбирают исходя из требуемого уровня нагрузки.
Коэффициент трансформации счетчика электроэнергии, изменяется в зависимости от смонтированного оборудования. Таким образом, прибор учета электроэнергии, работающий в паре с трансформатором, считывает нагрузку, пониженную в 30, 40 или 60 раз. Проще говоря, эти цифры и представляют собой коэффициенты трансформации.
Электронные или индукционные
Специалисты в области электротехники отмечают, что на сегодняшний день потребители отдают предпочтение электронным видам считывающих устройств, поскольку у них класс точности ниже, чем у индукционных устройств. Коэффициент трансформации счетчика влияет на точность конечных показаний. В среднем у индукционных образцов класс точности равен 2.5, тогда как у электронных – 2.0. Это означает, что погрешность показаний в результате работы электрического считывающего устройства электронного типа составляет до 2%, а у индукционного – 2,5%.
Именно по этой причине на данный момент чаще устанавливается электронное оборудование, так как оно позволяет больше сэкономить, получая показании точней. Специалисты настоятельно не рекомендуют устанавливать оборудование с завышенным значением коэффициента трансформации. В современной электротехнике принято использовать трансформаторы со статичным КТ, который гарантированно не будет изменяться при эксплуатации.
К таким электрическим счетчикам можно отнести Меркурий-230. Меркурий-230 производится на территории России и считается одним из лучших образцов для коммерческого и частного использования. Меркурий-230 может изготавливаться для одно- и друхтарифного плана. Обычно модель Меркурий-230 поддерживает трехфазную электрическую сеть. В среднем для Меркуия-230 гарантийный срок составляет 25 лет, что является оптимальным выбором при учете качества и цены. Меркурий-230 полностью соответствует ГОСТ стандартам.
Меркурий-230 имеет хороший класс точности и стабильно работает при значительных изменениях температуры в окружающей среде в течение всего срока эксплуатации устройства. Меркурий-230 позволяет обеспечить точное измерение текущих параметров электрической сети – частоту, коэффициент мощности, текущее значение фазного тока, напряжение.
Тарификатор Меркурия-230 позволяет одновременно учитывать показания по 4 тарифам в 16 временных зонах суток, а также для четырех типов дня. Меркурий-230 может учитывать активную электроэнергию прямого направления и полной ее мощности по фазам, сумме значений фаз с определением направления вектора полной мощности.
Индукционные модели
Этот тип измерительных приборов является наиболее распространенным.
В его конструкцию входят две металлические катушки, магнитное поле, создаваемое током, приводит их в движение, вследствие чего и происходит вращение диска, оснащенного шкалой.
Скорость работы прибора находится в прямой зависимости от напряжения, поэтому при сниженных объемах потребления электричества он будет крутиться медленнее.
Недостаток этих счетчиков заключается в значительной погрешности измерений, служить они могут около 15 лет, что является хорошим показателем.
Виды и правила выбора преобразователя электротока
Трансформаторное оборудование, снижающее электроток (ТТ), классифицируется по различным характеристикам, в том числе коэффициенту преобразования. Это оборудование требуется, если объект потребляет мощности, которые в несколько раз превышают возможности обычного узла.
ТТ преобразует ток до уровня, позволяющего подключить для контроля обычные электросчетчики на одну или три фазы и создать систему защиты линии.
Классификация
По способу монтажа
ТТ по такому принципу делятся на:
По типу изоляции
Трансформатор электротока может быть:
Какие параметры учитывать
Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.
Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.
Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.
Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.
Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.
Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.
Расчет показаний счетчика непрямого подключения
ТТ устанавливаются в сети, потребляющие сотни киловатт эл энергии. Принцип работы такого преобразователя основан на снижении величины электротока до значения, позволяющего подключить через него стандартный электросчетчик. Например, счетчик на 5 А, в сети 150 А, ТТ должен снизить показатель в 30 раз, то есть, коэффициент трансформации, используемый при подсчете расхода, тоже 30.
Как считать показания счетчика с трансформатором тока? Нужно их просто считать и отнять показатель, считанный в начале расчетного периода.
Потом полученная цифра умножается на коэффициент трансформации, указанный в технической документации или акте поставщика электроэнергии, рассчитанный самостоятельно. Это и есть ответ на вопрос, как рассчитать электроэнергию с трансформаторами тока.
Как определить коэффициент трансформации: формула
Коэффициент трансформации счетчика электроэнергии указывает во сколько раз входные параметры напряжения или тока отличаются в меньшую или большую сторону от показателей на выходе.
При показателях, превышающих единицу, производится снижение, и, напротив, при показателях менее единицы, применяется устройство повышающего типа.
Различаются коэффициенты трансформации на напряжение или ток.
Формула расчёта: k=U1/U2=N1/N2 ≈ I2/I1, где:
Как правило, такие параметры коэффициента трансформации в обязательном порядке указываются в сопроводительной документации, которая прилагается к оборудованию. Также эти сведения можно узнать из обозначений на корпусе такого устройства.
Сложной является ситуация, при которой КТ нужно вычислить самостоятельно, по данным, полученным эмпирическим путем. В этом случае осуществляется пропуск тока сквозь первичную обмотку оборудования и замыкание на вторичной обмотке, после чего замеряется величина электрического тока, проходящего по вторичной обмотке.
Самостоятельный расчёт предполагает деление значения первичного тока, на значение вторичной обмотки. Результатом таких расчётов является частное, представленное коэффициентом трансформации.
Формула для определения КТ
Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.
Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.
Общая формула следующая:
где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).
Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:
где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.
Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.
Коэффициент трансформации (учета) электросчетчика – это величина, на которую умножают показатели счетчиков, чтобы получить более корректные данные. Например, для домашних сетей – 20 единиц. Если использовать коэффициент и цифры с экрана счетчика, можно получить количество реально потребленной энергии.
Схемы подключения
Электротехнические счетчики и трансформаторы соединяются с учетом требований безопасности и правил работы, а также особенностями самого прибора. Минимальная температура установки – +5˚ по Цельсию. В противном случае не получится корректного технического соединения – приборы, работающие с напряжением и токами, плохо переносят низкие температуры.
Если требуется подключить трансформатор на улице в холодное время года, необходимо сооружать специальный шкаф – утепленный и герметичный. Сам прибор обычно устанавливают на высоте 1-1,7 метра.
Установка счетчика с трансформаторами тока
Не всегда есть возможность измерять потраченную электроэнергию через счетчик, подсоединенный к сети питания напрямую (в розетку). В цепях с напряжением в 380 Вольт и пределами токов больше 100А – соответственно и потребление вырастает до 60 кВт – требуется монтаж измерительного трансформатора тока. Подобное соединение мастера называют косвенным, но такой способ дает наиболее точные данные. Кроме этого есть и еще два метода:
Первое используется на промышленных предприятиях и крупных заводах с расходом мощности выше 0,4 кВт и током силой более 100А.
Схема «звезда» в свою очередь может быть полной и неполной. Для полной звезды подойдут устройства с равномерным распределением нагрузки и симметричным токовым потоком. Трансформатор устанавливается на все фазы, а релейная обмотка соединяется по форме звезды.
Неполная – двухфазная двухрелейная схема с образованием части звезды. Данная схема быстро реагирует на короткие замыкания (кроме заземления), а также есть возможность установки на межфазных щитках.
Установка многовиткового измерителя
Трехфазный счетчик трансформаторного включения используют в многопроводных сетях. При многовитковых соединениях первичную обмотку катушки заменяют на кабельную. Прибор контролирует движение тока по вторичной обмотке. В остальном – трансформатор работает по тому же принципу, что и оборудование другого типа.
Десятипроводная схема
Данный способ подключения подходит для использования в мощных силовых цепях, работа которых обеспечивается трансформаторами. Развязка гальванического типа подходит для промышленных и бытовых нужд и гарантирует безопасность эксплуатации оборудования. Последовательность соединения по клеммам (от первой к последней):
Семипроводная схема
Подобная схема подключения имеет ряд преимуществ и некоторые недостатки. Незначительно отличается от десятипроводной. Работать со счетчиком удобно – нет необходимости отключать систему полностью при проведении работ со щитком, приборами учета и трансформаторами.
Благодаря заземленным токовым цепям на выходах вторичных обмоток не накапливается опасный потенциал, который часто приводит к коротким замыканиям и сгоранию оборудования. К общей сети подключается испытательная коробка, которая позволяет безопасно отсоединять цепи питания.
Семипроводной способ – один из устаревших, используется редко. Электромонтажеры профессиональных компаний не рекомендуют подключаться более современными способами.
Схема с совмещенными цепями
Подобная схема существенно отличается от предыдущих. Трансформаторы тока с совмещенными цепями подсоединяются через специальные перемычки (путь получается от L1 к L2).
Другие системы подсоединения
Кроме указанных, существуют и иные схемы подключения счетчика к трансформатору. Использование испытательной колодки в соединении – согласно п. 1.5.23 Правил устройства электроустановок – необходимо при активации образцового прибора учета. Это дополнительное оборудование, которое позволяет шунтировать и отключать токовые цепи, активировать счетчики без снижения нагрузки напряжения. Еще один момент – возможность пофазного снятия показаний.
Основа соединения через испытательную коробку – десятипроводная схема. Отличие состоит в установке между прибором учета и трансформаторной конструкцией переходного блока с необходимыми защитными и распределительными функциями.
Установка трехфазного электросчётчика
Хотя в установке электросчётчика особых сложностей нет лучше, чтобы эту работу выполняли квалифицированные специалисты. Рассмотрим установку трехфазного электросчётчика с измерительными трансформаторами на примере счётчика Меркурий. Эта модель счётчиков является одной из самых распространённых в нашей стране.
Прежде чем приступить к монтажу электросчётчика рекомендуется выполнить монтаж входного автоматического выключателя. Наличие такого автоматического выключателя поможет более безопасному и быстрому выполнению различных ремонтных или профилактических работ. Далее, устанавливается непосредственно счётчик Меркурий и трансформаторы тока. Затем осуществляется монтаж проводов на клеммную колодку счётчика в соответствии со схемой подключения. Включив автоматический выключатель, проверяется работоспособность прибора учёта по счётчику показаний электроэнергии.
Счётчики учёта электроэнергии старого поколения типа Меркурий с трансформаторами тока в наше время вытесняются более передовыми и эффективными средствами учёта электроэнергии. Трехфазные счётчики нового поколения Меркурий можно программировать на различные режимы работы, менять тарифный план и даже дистанционно передавать показания электроэнергии.
Каждый потребитель электроэнергии обязан иметь учетное устройство, позволяющее контролировать расход потребляемого электричества. Электрические счетчики отличаются по внешнему виду, способу подсоединения и имеют различную нагрузку. Трехфазные устройства подключаются посредством трансформаторов тока, преобразовывающих ток до оптимальных значений, при которых устройство может нормально работать.
Особенности учета
Для уменьшения энергопотерь электричество транспортируется по высоковольтным линиям, чтобы привести характеристики сети в соответствие с параметрами бытовой техники применяются трансформаторы, понижающие напряжение.
Таким образом, домашний электросчетчик фиксирует не реальное потребление, а лишь количество электричества с пониженным напряжением, поэтому для определения точных затрат необходимо умножить показания прибора учета на коэффициент трансформации.
Соответствие коэффициента трансформации и номинального напряжения Многие коммунальные предприятия делают это заранее, при составлении тарифов для населения, в таком случае используется среднее значение.
Расчетный коэффициент учета
Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.
На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.
Советы и рекомендации
Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.
При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах. Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев
Срок давности пломбы на однофазном счетчике не может превышать два года
Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.
Полезные рекомендации
Электросчетчики позволяют посмотреть количество потребляемой энергии, чтобы адекватно оценить расход и посчитать итоговую оплату. Устройства различаются по классу точности, мощности, степени допустимой погрешности. Чтобы получить точные данные, снимают показания, с помощью коэффициента и калькулятора вычисляют фактическое потребление.
Для жилых домов в городской зоне и поселках используют небольшие устройства – однофазные счетчики (например, Меркурий 230 ART-03 CN, производство г. Москва) или многотарифные приборы, подходящие для сети в 220 Вольт или 120 Ампер.
Важно, чтобы каждое новое устройство имело пломбу проверки государственного образца. Без этого показания электросчетчика не будут считаться достоверными, и приниматься контролирующими органами. Выбирать подходящий счетчик и высчитывать фактические показатели можно самостоятельно или через контролеров.
Коэффициент трансформации счетчика электроэнергии (КТ) – это одна из технических величин, виляющих на точность показаний прибора учёта.
Показатель определяется эффективностью функционирования трансформаторной подстанции.
Разберем подробно данную величину.
Как выбрать трансформаторы тока для подключения расчетных счетчиков
Счетчики для расчетов за потребляемую электроэнергию между энергоснабжающей организацией и потребителями следует устанавливать на границе раздела сети по балансовой принадлежности и эксплуатационной ответственности между энергоснабжающей организацией и потребителем. Число счетчиков на объекте должно быть минимальным и обосновано принятой схемой электроснабжения объекта и действующими тарифами на электроэнергию для данного потребителя. Расчетные счетчики у арендаторов, находящихся в жилых, общественных и других зданиях и обособленных в административно-хозяйственном отношении, надо устанавливать раздельно для каждого самостоятельного потребителя (организации, домоуправления, ателье, магазина, мастерской, склада и т. д.).
Коэффициент трансформации трансформаторов тока следует выбирать по расчетной присоединяемой нагрузке с учетом работы установки в аварийном режиме. Завышенным по коэффициенту трансформации считается такой трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика (номинальный ток счетчика — 5 А).
В зависимости от величин сопротивления потребителей вторичной цепи Z 2, Ом, и вторичной нагрузки трансформатора тока S2, ВА, один и тот же трансформатор тока может работать в различных классах точности. Для обеспечения достаточной точности показаний приборов и действия аппаратов защиты, подключенных к трансформатору тока, необходимо, чтобы величина Z2 не выходила за пределы номинальной нагрузки трансформатора тока.
Трансформаторы тока имеют токовые ΔI и угловые погрешности δ. Токовая погрешность, проц. по приведенному соотношению учитывается в показаниях всех приборов:
где kном — номинальный коэффициент трансформации; I1 и I2 — ток соответственно первичной и вторичной обмоток трансформатора.
Угловая погрешность определяется углом δ между векторами тока I1 и I2 и учитывается только в показаниях счетчиков и ваттметров.
Трансформаторы тока имеют следующие классы точности: 0,2; 0,5; 1; 3; 10, что соответствует величинам токовых погрешностей, проц. Класс точности трансформаторов тока должен быть для счетчиков коммерческого учета — 0,5; для электроизмерительных приборов— 1; для реле токовых защит — 3; для лабораторных приборов — 0,2.
Пример выбора трансформаторов тока для подключения счетчика.
Расчетный ток присоединения в нормальном режиме — 90 А, в аварийном — 126 А.
Выбирают трансформаторы тока с коэффициентом трансформации n т = 150/5 исходя из нагрузки в аварийном режиме.
Проверка. При 25%-ной нагрузке ток в первичной цепи составляет I1 = ( 90 х 25)/100 = 22,5 А.
Ток во вторичной цепи (при коэффициенте трансформации n т = 150. 5 = 30) составит
I 2 = I1/nt = 22. 5/30 = 0,75 А.
Трансформаторы тока выбраны правильно, так как I 2 > I н счетчика, т. е. 0,75 > 0,5.
Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм2. Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам счетчика, не должно превышать 10 мм2.
При выборе трансформаторов тока к расчетным счетчикам рекомендуется использовать данные из ПУЭ (таблица «Выбор трансформаторов тока»). До приборов учета, смонтированных на вводе в целях безопасной установки, проверки и замены счетчиков и трансформаторов тока в электроустановках при наличии двух питающих линий (вводов) и двух распределительных сборок, имеющих коммутационные аппараты для их соединения (секционные рубильники, АВР и др.), до приборов учета, смонтированных на вводе, должны быть установлены отключающие аппараты, а после приборов учета — аппараты, обеспечивающие разрыв цепи со стороны распределительных сборок.
ОСНОВНЫЕ ПРИНЦИПЫ РАСЧЕТНОГО УЧЕТА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
14.1. Правила учета электрической энергии
Расчеты за потребляемую электроэнергию являются одной из основополагающих позиций договорных взаимоотношений между потребителем и энергоснабжающей организацией, учитывающих интересы обеих сторон.
Требования к расчетным приборам учета электроэнергии являются многогранными и включают в себя достоверность и точность определения расхода электроэнергии с учетом ее потерь в электрических сетях, открытости и доступности результатов измерений на всех этапах производства, передачи, распределения и потребления электроэнергии.
Эти вопросы находятся в центре внимания на самом высоком государственном уровне и отражены в ряде законодательных правительственных документов, в том числе:
в Законе Российской Федерации «Об энергосбережении» № 28-ФЗ, принятом Государственной Думой 13 марта 1996 г., в котором указана необходимость обеспечения обязательного приборного учета всего объема производимых и потребляемых энергоресурсов;
в статьях 541, 543 и 544 Гражданского кодекса, в которых подчеркивается, что количество переданной электрической энергии определяется в соответствии с данными приборов учета о ее фактическом потреблении и т. д.;
в постановлении Правительства Российской Федерации от 02.11.95 № 1087 «О неотложных мерах по энергосбережению», на базе которого действуют Правила учета электрической энергии [18];
в Законе Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в Российской Федерации, регулирует отношения государственных органов управления РФ с юридическими и физическими лицами по вопросам изготовления, выпуска, эксплуатации, ремонта, продажи и импорта средств измерений и направлен на защиту прав и законных интересов граждан, установленного правопорядка и экономики РФ от отрицательных последствий недостоверных результатов измерений;
в Законе Российской Федерации «О государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации», принятом Государственной Думой 10 марта 1995 г., который определяет экономические, организационные и правовые основы государственного регулирования тарифов на электрическую и тепловую энергию в РФ;
в других законодательных, правовых и подзаконных актах, а также в государственных стандартах и ряде нормативно-технической документации.
Настоящие Правила учета электрической энергии определяют общие требования к организации ее учета и взаимосвязь между основными нормативно-техническими документами, действующими в этой области.
Допускается на основании действующих правовых и нормативно-технических документов ведомствами разрабатывать и утверждать в установленном порядке в пределах своей компетенции ведомственные нормативно-технические документы в области учета электроэнергии, не противоречащие утвержденным Правилам учета электрической энергии. Если эти документы содержат требования межведомственного характера, они должны быть согласованы в установленном порядке с Ростехнадзором.
Правила учета электрической энергии являются обязательными при:
осуществлении производства, передачи, распределении и потреблении электрической энергии;
выполнении проектных, монтажных, наладочных и ремонтных работ по организации учета электрической энергии;
обеспечении эксплуатации средств учета электрической энергии.
Основной целью учета электроэнергии является получение достоверной информации о ее производстве, передаче, распределении и потреблении на оптовом и розничном рынках для решения следующих основных технико-экономических задач:
финансовых расчетов за электроэнергию и мощность между энергоснабжающими организациями и потребителями электроэнергии с учетом ее качества;
определения и прогнозирования технико-экономических показателей производства, передачи и распределения электроэнергии в энергетических системах;
определения и прогнозирования технико-экономических показателей потребления электроэнергии на предприятиях промышленности, транспорта, сельского хозяйства, коммунально-бытовым сектором и др.;
обеспечения энергосбережения и управления электропотреблением.
Учет активной электроэнергии должен обеспечивать определение количества электроэнергии (и в необходимых случаях средних значений мощности):
выработанной генераторами электростанций;
потребленной на собственные и хозяйственные нужды (раздельно) электростанций и подстанций, а также на производственные нужды энергосистемы;
отпущенной потребителям по линиям, отходящим от шин электростанций непосредственно к потребителям;
переданной в сети других собственников или полученной от них;
отпущенной потребителям из электрической сети;
переданной на экспорт и полученной по импорту.
Организация учета активной электроэнергии должна обеспечивать возможность:
определения поступления электроэнергии в электрические сети различных классов напряжения энергосистем;
составления балансов электроэнергии для хозрасчетных подразделений энергосистем и потребителей;
контроля за соблюдением потребителями заданных им режимов потребления и балансов электроэнергии;
расчетов потребителей за электроэнергию по действующим тарифам, в том числе многоставочным и дифференцированным;
Учет реактивной электроэнергии должен обеспечивать возможность определения количества реактивной электроэнергии, полученной потребителем от электроснабжающей организации или переданной ей, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.
Учет электроэнергии производится на основе измерений с помощью счетчиков электрической энергии и информационно-измерительных систем.
Для учета электроэнергии должны использоваться средства измерений, типы которых утверждены Госстандартом России и внесены в Государственный реестр средств измерений.
К средствам учета относится совокупность устройств, обеспечивающих измерение и учет электроэнергии (измерительные трансформаторы тока и напряжения, счетчики электрической энергии, телеметрические датчики, информационно-измерительные системы и их линии связи) и соединенных между собой по установленной схеме.
Организация учета электроэнергии на действующих, вновь сооружаемых, реконструируемых электроустановках должна осуществляться в соответствии с требованиями действующей НТД в части:
мест установки и объемов средств учета электроэнергии на электростанциях, подстанциях и у потребителей;
классов точности счетчиков и измерительных трансформаторов;
размещения счетчиков и выполнения электропроводки к ним.
Учет активной и реактивной энергии и мощности, а также контроль качества электроэнергии для расчетов между энергоснабжающей организацией и потребителем производится, как правило, на границе балансовой принадлежности электросети.
Для повышения эффективности учета электроэнергии в электроустановках рекомендуется применять автоматизированные системы учета и контроля электроэнергии, создаваемые на базе электросчетчиков и информационно-измерительных систем.
Лица, выполняющие работы по монтажу и наладке средств учета электроэнергии, должны иметь лицензию на проведение данных видов работ, т. е. документ, удостоверяющий право заниматься указанными видами деятельности, выдаваемый юридическим и физическим лицам органом государственной метрологической службы.
Средства учета электрической энергии и контроля ее качества должны быть защищены от несанкционированного доступа для исключения возможности искажения результатов измерений.
Организация эксплуатации средств учета электроэнергии должна вестись в соответствии с требованиями действующих НТД и инструкций заводов-изготовителей.
Эксплуатационное обслуживание средств учета электроэнергии должно осуществляться специально обученным персоналом.
При обслуживании средств учета электроэнергии должны выполняться организационные и технические мероприятия по обеспечению безопасности работ в соответствии с действующими правилами.
На основании действующих правовых и нормативно-технических документов ведомства могут разрабатывать и утверждать в пределах своей компетенции ведомственные НТД в области учета электроэнергии, не противоречащие настоящим правилам.
В сроки, установленные Госстандартом России, необходимо производить периодическую проверку средств измерений, используемых для учета электрической энергии и контроля ее качества. Перестановка, замена или изменение схем включения средств учета осуществляется с согласия энергоснабжающей организации.
Помимо Правил учета электрической энергии действует Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении (РД 34.09.101-94), которая содержит основные положения по учету электроэнергии при ее производстве, передаче и распределении, устанавливает требования к организации, составу и правилам эксплуатации систем учета электроэнергии и мощности. Типовая инструкция предназначена для персонала акционерных обществ энергосистем, проектных организаций и потребителей электроэнергии.
Представители Ростехнадзора имеют право доступа к приборам учета электроэнергии, измерительным комплексам и системе учета в целом на всех электростанциях, подстанциях и предприятиях, расположенных в зоне обслуживания, для выполнения инспекционных и регламентных работ с участием персонала соответствующего энергообъекта (электроустановки).
Настоящие Правила учета электрической энергии согласованы с Госстандартом России, Главгосэнергонадзором России и РАО «ЕЭС России» и утверждены в Минтопэнерго Российской Федерации и в Минстрое Российской Федерации.
14.2. Приборы учета электрической энергии
В качестве расчетных и технических (контрольных) средств учета на предприятиях (организациях) используются электросчетчики одно-и трехфазного тока в основном двух типов: индукционные и электронные (1-, 2– и многотарифные), находящие все более широкое применение.
Индукционные трехфазные счетчики активной и реактивной энергии, применяемые в качестве расчетных приборов учета, должны иметь класс точности не ниже 2,5 (0,5; 1,0; 2,0 и 2,5) для активной и не ниже 3 (1,5; 2,0 и 3,0) для реактивной энергии.
Индукционным называется счетчик, в котором магнитное поле неподвижных токопроводящих катушек влияет на подвижный элемент из проводящего материала. Обычно это диск, по которому текут токи, индуцированные магнитным полем катушек.
В соответствии с ГОСТ 6570-75 счетчики характеризуются:
постоянной счетчика С, т. е. числом ватт-секунд, ватт-часов или киловатт-часов, приходящихся на один оборот диска прибора;
передаточным числом А, т. е. числом оборотов диска, которое он должен сделать, чтобы показание счетчика изменилось на 1 кВт-ч;
коэффициентом K счетчика, т. е. числом, на которое нужно умножить показания счетчика, чтобы получить фактический расход электроэнергии, кВт-ч.
Постоянную счетчика С
можно вычислить, используя маркировку на его щитке, по формулам, приведенным в табл. 6.
Формулы для определения постоянной счетчика С
Одним из недостатков индукционных счетчиков является наличие у них самохода, который представляет собой движение диска счетчика под действием напряжения, поданного на зажимы цепи напряжения, при отсутствии тока в шоковой цепи счетчика.
В соответствии с ГОСТ 6570-75 диск счетчика не должен совершать более одного полного оборота при отсутствии тока в последовательной (токовой) цепи и при любом напряжении от 80 до 110 % номинального.
Индукционные счетчики относятся к ремонтируемым невосстанавливаемым на объекте изделиям, которые должны иметь среднюю наработку до отказа не менее:
25 000 ч – для трехфазных счетчиков класса точности 0,5;
33 300 ч – для однофазных счетчиков кл. 2,0; для трехфазных счетчиков активной энергии кл. 1,0 и кл. 2,0;
37 500 ч – для однофазных счетчиков кл. 2,5 и трехфазных счетчиков реактивной энергии кл. 1,5 и кл. 2,0;
50 000 ч – для однофазных счетчиков кл. 2,0 и трехфазных счетчиков реактивной энергии кл. 3,0.
Средний срок службы до первого капитального ремонта должен быть не менее:
30 лет – для однофазных счетчиков кл. 2,0; для трехфазных счетчиков кл. 2,0 и кл. 3,0 по требованию потребителя;
27 лет – для трехфазных счетчиков кл. 2,0 и кл. 3,0;
25 лет – для однофазных счетчиков кл. 2,5;
22 года – для трехфазный счетчиков кл. 0,5, кл. 1,0 и кл. 1,5.
Индукционные счетчики могут применяться в трех или четырех-проводных сетях, в сетях с изолированной или глухозаземленной нейтралью, что можно определить по обозначению счетчика, а именно:
СА3 – трехфазный непосредственного включения или трансформаторный трехпроводный активной энергии;
СА4 – то же, четырехпроводный;
СР4 – трехфазный непосредственного включения или трансформаторный трех– и четырехпроводный реактивной энергии;
СА3У – трехфазный трансформаторный универсальный (со вторичным или смешанным счетным механизмом) трехпроводный активной энергии;
СА4У – то же, четырехпроводный;
СР4У – трехфазный трансформаторный универсальный (со вторичным или смещенным механизмом) трех– и четырехпроводный реактивной энергии.
Трансформаторным называется счетчик, предназначенный для включения через один или несколько измерительных трансформаторов.
Счетчики электронного типа одно– и трехфазные новейшей конструкции являются перспективными в условиях рынка сбыта и потребления электроэнергии, вследствие чего они все более интенсивно стали вытеснять индукционные приборы учета. Эти счетчики могут включаться в сеть непосредственно или через измерительные трансформаторы.
В соответствии с ГОСТ 30207-94 на электронные (статические) счетчики трансформаторным называется счетчик, предназначенный для включения через измерительные трансформаторы с заранее заданными коэффициентами трансформации. Показания счетчика в этом случае должны соответствовать значению энергии, прошедшей через первичную цепь.
Трансформаторным универсальным счетчиком называется счетчик, предназначенный для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для определения энергии, прошедшей через первичную цепь, необходимо показания счетчика умножить на произведение коэффициентов трансформации.
Основным достоинством электронных счетчиков является дифференцированный тариф учета электроэнергии (одно-, двух– и более тарифный), который обеспечивается с помощью внешнего устройства переключения тарифов (например, УПТ 12-100 в электросчетчике типа СЭТ4-2). Нагрузочная способность такого устройства переключения тарифов составляет от 1 до 30 счетчиков.
Многотарифный счетчик представляет собой счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам.
Электронный счетчик может использоваться в качестве датчика приращения потребления электроэнергии для дистанционных информационно-измерительных систем и систем учета и распределения электроэнергии.
В соответствии с ГОСТ 30207-94 счетчики электронного типа имеют стандартизированное название – статический счетчик, т. е. счетчик, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии. В настоящем стандарте указаны электронные счетчики в соответствии с их обозначением классов точности, т. е. 1 и 2.
Постоянной статического (электронного) счетчика называется значение, выражающее соотношение между энергией, учитываемой счетчиком, и числом импульсов на испытательном стенде.
Постоянная счетчика выражается либо в импульсах на киловатт-час [имп/(кВт-ч)], либо в ватт-часах на импульс [(Вт-ч)/имп].
В табл. 7 и 8 приведены стандартные (по ГОСТ 30207-94) значения номинальных напряжений и токов, т. е. тех величин, которые являются исходными при установлении требований к счетчикам.
Стандартные значения номинальных напряжений
Стандартные значения номинальных токов
Максимальный ток для счетчиков непосредственного включения, т. е. наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в ГОСТ 30207-94, это предпочтительно целое, кратное номинальному току (например, 4-кратному номинальному току).
Зажимы счетчика должны обеспечивать подключение до двух медных или алюминиевых проводов с суммарным сечением до 5 мм. Все зажимы, предназначенные для подключения к измерительным трансформаторам напряжения, должны быть раздельными и иметь отверстия диаметром не менее 4,2 мм.
Зажимы трехфазных счетчиков, предназначенных для включения с трансформаторами тока, должны обеспечивать раздельное включение цепей напряжения и тока; диаметр отверстий зажимов для этих цепей должен быть не менее 3,5 мм.
Средний срок службы до первого капитального ремонта и средняя наработка до отказа у статических счетчиков примерно такие же, что и у индукционных счетчиков. Например, для электронного счетчика непосредственного включения типа СЭТ4-1 (5-60)А эти значения соответственно составляют 24 года и 55 000 ч.
в качестве примера приведена схема непосредственного подключения счетчика типа СЭТ к четырехпроходной трехфазной сети.
В однотарифных счетчиках типа СЭТ4-1 цепь управления состоянием счетных механизмов (цепь переключения тарифов) не используется и зажим 14 на схеме рис. 8, а
Выходные каскады основного и поверочного выходов счетчика реализованы на транзисторах с «открытыми» коллекторами.
К выходным устройствам электронных счетчиков относятся:
испытательный выход – устройство, которое может быть использовано для испытания счетчика;
индикатор функционирования – устройство, выдающее визуально наблюдаемый сигнал функционирования счетчика;
запоминающее устройство – элемент, предназначенный для хранения цифровой информации;
энергонезависимое запоминающее устройство – запоминающее устройство, которое может сохранять информацию при отключении источника питания.
Для обеспечения функционирования выходных каскадов необходимо подать напряжение по схеме рис. 8, б на зажимы 2 и 13
Схема непосредственного подключения счетчика типа СЭТ к четырех-проводной трехфазной сети:
а –
схема подключения; б – схема подключения устройства переключения тарифов
основного выхода (передающего устройства) и зажимы 1 и 13 поверочного выхода.
В отличие от индукционных электронные счетчики имеют на щитке световую индикацию, а именно:
индикатор СЕТЬ, сигнализирующий о включении счетчика в сеть (при подаче в цепи напряжения счетчика фазных напряжений 220 В индикатор СЕТЬ должен постоянно светиться);
индикаторы А и В, сигнализирующие о включении нагрузки, которые должны мигать с частотой, пропорциональной мощности потребителя в нагрузках (при отсутствии тока нагрузки индикаторы А
и
В
находятся в произвольном состоянии, т. е. могут светиться или не светиться);
индикатор ТАРИФ II (тариф ночного времени) у двухтарифного счетчика, сигнализирующий о наличии на зажимах 13 и 14
счетчика сигнала управления, который должен осуществлять перевод счетного механизма второго тарифа (ТАРИФ II) в «активное» состояние, а счетного механизма первого тарифа – в «пассивное» состояние.
Расход электроэнергии учитывается непосредственно в киловатт-часах по шести цифрам барабанчиков, расположенных в окне щитка.
В табл. 9 приведены технические характеристики трехфазных электронных счетчиков, серийно выпускаемых ОАО «Мытищинский электротехнический завод» (№ 1-8) и ABB ВЭИ Метроника, г. Москва (№ 9-12).
В прил. 7 приведена маркировка щитков электронных счетчиков (по ГОСТ 30207-94).
Счетчики трехфазные электронные
На предприятиях (в организациях) часто возникает необходимость определения присоединенной мощности (нагрузки) в разные периоды суток, как правило, в часы максимума или минимума нагрузок энергосистемы. К сожалению, в этих случаях иногда электротехнический персонал предприятий (организаций) испытывает определенные трудности, вплоть до того, что использует для этой цели электроизмерительные клещи с последующим расчетом мощности, несмотря на то что в договоре энергоснабжения отмечено, что для этой цели необходимо использовать счетчик активной энергии.
Измерение нагрузки можно осуществить при помощи счетчика активной энергии и секундомера следующим образом.
В момент появления на диске счетчика фиксированной черты следует включить секундомер и после некоторого числа n полных оборотов диска счетчика секундомер надо остановить. Затем в зависимости от значений постоянной счетчика С и его передаточного числа А производят подсчет мощности по формулам, указанным в табл. 10.
Формулы для подсчета мощности по счетчику c помощью секундомера
В таблице
t –
время, показанное секундомером, с.
На предприятии на двух фидерах установлены расчетные приборы учета, питающиеся от трансформаторов:
Трансформатор мощностью 630 кВ-А с измерительными ТТ 100/5 А и ТН 10 000/100 В. Установлен трансформаторный счетчик, отградуированный на ТТ 75/5 А и ТН 6000/100 В, на щитке которого обозначено 1 кВт-ч = 25 оборотов диска.
Трансформатор мощностью 400 кВ-А с измерительными ТТ 50/5 А и ТН 6000/100 В. Установлен универсальный счетчик, на щитке которого написано 3×5 А 6000/100 В, 1 оборот диска = = 10 Вт-ч.
Определить нагрузку по каждому фидеру и общую нагрузку предприятия.
1. Измеряем секундомером время t
полных оборотов
n
диска 1-го счетчика. Предположим, что замеры показали:
= 5 с при
n
= 6 полных оборотов диска.
2. Поскольку счетчик является трансформаторным, подключенным к измерительным ТТ и ТН с другими значениями коэффициентов трансформации, то необходимо определить перерасчетный коэффициент Кпр, который будет равен произведению двух отношений: коэффициентов трансформаторов тока фактически установленного и счетчика, и коэффициентов трансформаторов напряжения фактически установленного и счетчика, т. е.
3. Так как на щитке счетчика обозначено 1 кВт-ч = 25 оборотов диска, то по формуле (56) определяем мощность, показанную счетчиком:
4. С учетом перерасчетного коэффициента Kпр фактическая мощность по 1-му фидеру составит:
5. Определяем мощность, показанную счетчиком по 2-му фидеру, используя для наших условий задачи формулу (58):
где измеренные значения по секундомеру n =
полный оборот диска при t = 50 с.
6. Фактическая нагрузка по 2-му фидеру с учетом коэффициентов измерительных ТТ и ТН составит:
7. Таким образом, в данный период суток нагрузка предприятия по 1-му фидеру составляет 384 кВт, по 2-му фидеру – 216 кВт, а общая нагрузка будет равна:
Правильный подсчет мощности (нагрузки) и умение пользоваться расчетными коэффициентами средств учета (электросчетчиков и измерительных трансформаторов) не позволит допустить переплату за потребляемую электроэнергию и обеспечит надежный контроль за договорными значениями присоединенной мощности.
В соответствии с требованиями ПТЭЭП наблюдение за работой средств учета электрической энергии на электрических подстанциях (в распределительных устройствах) должен вести оперативный или оперативно-ремонтный персонал.
Ответственность за сохранность и чистоту средств измерений и учета электрической энергии несет персонал, обслуживающий оборудование, на котором они установлены.
Установку и замену измерительных трансформаторов тока и напряжения, к вторичным цепям которых подключены расчетные счетчики, выполняет персонал эксплуатирующего его потребителя с разрешения энергоснабжающей организации.
Замену и поверку расчетных счетчиков, по которым осуществляется расчет с энергоснабжающей организацией, производит собственник приборов учета по согласованию с энергоснабжающей организацией.
Персонал энергообъекта в соответствии с требованиями ПТЭЭП несет ответственность за сохранность расчетного счетчика, его пломб и за соответствие цепей учета электроэнергии установленным требованиям. Нарушение пломбы на расчетном счетчике, если это не вызвано действием непреодолимой силы, лишает законной силы учет электроэнергии, осуществляемый данным расчетным счетчиком.
Для защиты от несанкционированного доступа к электроизмерительным приборам, коммутационным аппаратам и разъемным соединениям электрических цепей должно производиться их маркирование в цепях учета специальными знаками визуального контроля в соответствии с установленными требованиями.
Вопросам учета потребления электрической энергии в эпоху рыночных взаимоотношений стали уделять повышенное внимание, поскольку достоверность и точность информации о выработке и потреблении электроэнергии решает целый комплекс насущных проблем в электроэнергетике, в том числе вопросы энергосбережения, снижения оплаты за потребляемую электроэнергию, выбора рациональных режимов работы электроустановок, достоверности определения потерь электроэнергии в сетях и другие важные вопросы.
Схемы подключения счетчика через трансформаторы тока
Для правильного учета электроэнергии с применением ТТ необходимо соблюдать полярность подключения их обмоток: начало и конец первичной имеют обозначение Л1 и Л2, вторичной — И1 и И2.
Схемы полукосвенного подключения трехфазных электросчетчиков (с применением только ТТ) могут быть выполнены в разных вариантах:
Семипроводная. Это устаревшая и наименее предпочтительная в плане электробезопасности схема ввиду наличия связи токовых и измерительных цепей — токовые цепи электросчетчика находятся под напряжением.
Десятипроводная схема. Более предпочтительная и рекомендуемая для использования в настоящее время. Отсутствие гальванической связи токовых цепей прибора учета и цепей напряжения делает подключение счетчика более безопасным.
Подключение выполняется на основе десятипроводной схемы, ее отличие от последней состоит в наличии специального испытательного переходного блока между электросчетчиком и ТТ.
С соединением ТТ в “звезду”. Одни выводы вторичных обмоток ТТ соединяются в одной точке, образуя соединение «звезда», другие — с токовыми катушками счетчика, также соединяемые по схеме «звезда».
Недостаток такого способа подключения учета — большая сложность коммутации и проверки правильности сборки схемы.
Где устанавливается прибор учета и какие модели наиболее популярны?
Советы по установке и выборе трехфазного счетчика
Как было отмечено ранее, для подсчета электропотребления на территории небольшой площади (квартира, частный дом и т.п.) особой целесообразности в использовании 3 фазных счетчиков нет.
Однако, согласно последней статистике, около трети частных жилищ в РФ оборудованы именно таким прибором учета электричества.
Что касается более широкого спектра использования трехфазовых устройств, то распространено их применение в:
То есть, используются 3 фазные счетчики преимущественно там, где электросеть простилается на большую площадь и нагрузка на нее довольно-таки высока. На данный момент наиболее популярные модели подобных устройств следующие:
Особых различий между электросчетчиками от разных производителей нет, поэтому рассматривать каждый из них более детально, пожалуй, не будем.
Как определить коэффициент трансформации: формула
При показателях, превышающих единицу, производится снижение, и, напротив, при показателях менее единицы, применяется устройство повышающего типа.
Различаются коэффициенты трансформации на напряжение или ток.
Как правило, такие параметры коэффициента трансформации в обязательном порядке указываются в сопроводительной документации, которая прилагается к оборудованию. Также эти сведения можно узнать из обозначений на корпусе такого устройства.
Сложной является ситуация, при которой КТ нужно вычислить самостоятельно, по данным, полученным эмпирическим путем. В этом случае осуществляется пропуск тока сквозь первичную обмотку оборудования и замыкание на вторичной обмотке, после чего замеряется величина электрического тока, проходящего по вторичной обмотке.
Включение в однофазную цепь
Фазный провод цепи выступает в роли начальной обвивки в однофазных трансформаторах, где оптимальные показатели силы тока приближаются к 100 А или более. Вторичная катушка пропускает ток не более 5 А. Монтаж электросчетчика производится методом разрыва основного силового кабеля. При этом запрещается подсоединять перед установленным устройством какие-либо коммуникации для потребительских нужд.
В цепи однофазного электросчетчика монтируются два автомата: один предназначается для снятия электротока при смене устройства, а другой непосредственно для отключения внутренней проводки потребителя для замены разводки или ремонта неполадок в цепи. Схему установки электрического счетчика можно найти на обратной панели самого прибора.
При монтаже прибора каждая фаза и нейтраль подсоединяется по следующей схеме: клемма 1 соединяется с силовым выходом, вторая — к отводящей силовой клемме, 3-й зажим к нулевой жиле, а клемма 4 — к отводящей нейтрали.
В заключении можно сказать, что при монтаже электрических учетных измерителей необходимо учитывать все факторы, влияющие на работу. Их можно устанавливать независимо от технических характеристик. Это обуславливается возможность подключения ТТ и других элементов, стабилизирующих их работу.
Основной параметр трансформатора
Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.
При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.
В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.
Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.
В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.
Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.
Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.
Классификация
Электросчетчики разделяются на одно- или многофазные, применяются такие устройства для сетей, где может быть переменное напряжение.
Например, однофазный счетчик, который установлен почти во всех жилых помещениях, функционирует только в диапазоне от 220 до 230 В, тогда как трехфазных также измеряет напряжение в пределах от 220 до 400 В.
Подробная схема классификации счетчиков Многие энергокомпании предоставляют возможность сэкономить на электричестве с помощью установки многотарифного счетчика. Такие устройства имеют две или более независимые шкалы, переход между ними осуществляется в определенное время.
Обычно ночью 1 кВт электроэнергии обходится значительно дешевле, но объемы ее потребления тоже сильно снижаются. Для экономии можно запрограммировать работу некоторых устройств, например, стиральной или посудомоечной машины на ночное время.
Существует 3 типа счетчиков:
Электронные приборы учета
Данные счетчики достаточно дорогостоящи, однако цена оправдывает качество. Эти устройства имеют высокий класс точности, что сводит погрешности показаний к минимуму. У данных устройств есть функция многотарифности. Принцип действия такого счетчика основан на том, что он трансформирует сигнал в цифровой код, который затем расшифровывается микроконтроллером. Затем данные выводятся на дисплей. Такие счетчики имеют возможность вести учет в нескольких направлениях, они намного компактнее и занимают меньше места. К отрицательным качествам следует отнести гиперчувствительность к скачкам напряжения, а также такие счетчики непригодны для ремонта.
Индукционные счетчики
Приборы первого типа в своем составе имеют две катушки, одна из них ограничивает переменный ток, исключая неточности и образуя магнитное поле. Вторая — образует переменный ток. К плюсам этих счетчиков можно отнести их высокую работоспособность, простая конструкция. Несмотря на перепады напряжения, такие счетчики прослужат очень долго. Индукционные устройства достаточно габаритны, но имеют доступную цену. Даже несмотря на распространенность такие счетчики энергоемкими и низкой точности.
Как снимать показания с трехфазных счетчиков
Чтобы разобраться, как снимать показания с трехфазных электросчетчиков, нужно знать, какой прибор учета используется:
Электронные просты в обращении: информация высвечивается на табло, так же как и в обычных однофазных устройствах. Аналогично снимаются и показания.
Watch this video on YouTube
В старых ПУ фазы подключаются через трансформаторы. Чтобы корректно передать данные по расходу электроэнергии, необходимы коэффициенты трансформации. Фактический расход считается по формуле:
кВт•ч (по показаниям счетчика) * k (коэфф. трансф.)
Порядок высчитывания расхода оговорен в договоре с компанией-поставщиком энергии. Возможно, в документах указаны нужные значения коэффициентов. В отдельных случаях поставщик берет на себя расчет, а потребитель передает только фактические показания.
Корректность переданных показаний счетчика гарантирует правильные начисления и отсутствие риска значительной переплаты за поставленный ресурс.
Пример расчета
Рассмотрим, как рассчитать показания счетчика электроэнергии с трансформаторами тока с коэффициентом трансформации 100/5=20.
Например, на счетчике было значение, на 200 кВт превышающее цифру, списанную в начале периода.
При поиске ответа на вопрос, как рассчитать показания счетчика электроэнергии непрямого подключения с трансформаторами тока, важно учесть, что погрешность между реальным значением и указанным в техдокументации не должна превышать 2%. Показание должно быть снято с рабочего ответвления.
Решая вопрос, как посчитать показания счетчика электроэнергии, включенного в сеть с трансформатором тока, необходимо учитывать, что у любого прибора есть определенный срок службы. После того, как он закончился, не стоит надеяться, что считанные показания будут точные.
При покупке преобразователя необходимо проверить год и месяц выпуска. Это оборудование проверяется каждые 4 года, поэтому не должно быть просроченное.
Данные на шильдике изделия должны полностью совпадать с информацией в техпаспорте.
При выборе трехфазного ТТ необходимо учесть, что период со дня выпуска до пломбирования не должен превышать 12 месяцев. В противном случае возникнут дополнительные затраты на покупку другого преобразователя или госпроверку уже приобретенного.
Бесконтактные
К преимуществам бесконтактной аппаратуры можно отнести высокую точность, добиться этого удается за счет снижения помех.
Подобные аппараты могут похвастаться высокой надежностью, стойкостью к воздействию неблагоприятных факторов окружающей среды и защитой от воровства электроэнергии. Из-за высокой стоимости они применяются только на предприятиях, в частных домах встречаются очень редко.
Оптимальным выбором является индукционный счетчик электроэнергии высокой точности. Такой прибор стоит относительно недорого, но при этом способен производить точные подсчеты.
Смотрите видео, в котором специалисты разъясняют особенности приобретения счетчиков электроэнергии в зависимости от класса точности:
Точность измерительных приборов
Класс точности указывается на лицевой стороне счетчика Класс точности электрического счетчика представляет собой максимальную погрешность измерений, которая указывается в процентах.
Согласно действующему законодательству, старые электросчетчики, которые принадлежат к классу 2.5 или более, нуждаются в замене, вместо них устанавливают приборы с классом точности 1 или 2, но сделано это не во всех домах. Добиться погрешности меньше 1% можно только на промышленных объектах.
В конечном счете, выбор более точного счетчика может оказаться выгодным для потребителя, поскольку это позволит снизить сумму платежа за электроэнергию. Даже когда измерительный прибор устанавливается за счет энергетической компании, можно отказаться от стандартного счетчика и выбрать подходящую модель самостоятельно, если она соответствует стандартам, то ее обязаны установить.
Принцип работы измерительных трансформаторов
Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.
В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.
Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.
Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.
Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы
Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.
Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.
Устройства прямого или непосредственного включения
Схема подсоединения приборов прямого соединения аналогична монтажу однофазного электросчетчика. Ее можно найти в соответствующей документации, прилагаемой к прибору, либо на внутренней стороне крышки. Подключение этого типа основано на соблюдении порядка соединения проводов по маркировке и цветам. Нечетные провода подключаются к нулевой жиле, а четные к фазе.
Последовательность присоединения считается слева направо по следующей схеме:
Схемы подключения
Подключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.
Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.
Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.
Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.
Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.
В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков. поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.
Существует и другая схема подключения трехфазного счетчика через трансформаторы тока. применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.
Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром.
Выбор трансформатора
При выборе трансформатора необходимо руководствоваться ПУЭ. В пункте 1.5.17 указаны оптимальные значения, которые требуются для подсоединения и бесперебойного функционирования прибора. Потребление вторичной катушки ТТ не должно быть менее 40% от номинального при предельной нагрузке и менее 5% при минимальной. Кроме этого, нужно учитывать последовательность подсоединения силовых жил. Для этого обычно применяют специальный прибор — фазометр. При этом нужно обращать внимание на нормативные показатели напряжения и силы тока. Если нет возможности установить трехфазный электросчетчик, то можно вместо него использовать три однофазных устройства, но к ним нужны будут индивидуальные преобразователи.
Коммерческие потери: основное направление повышения эффективности в электроэнергетике
Коммерческие потери электроэнергии считаются сложно прогнозируемой величиной, так как зависят от потребителей, от их желания обмануть предприятие или государство. Основой указанных проблем являются:
Что такое трехфазный электрический счетчик?
Как выглядит 3 фазный электрический счетчик?
Трехфазный электрический счетчик – это стандартный прибор учета, устанавливаемый в отдельных жилых помещениях или в их комплексах.
Главной функцией данного устройства является проведение подсчета потребляемой в конкретном жилище электроэнергии и отражение сформированных показаний в удобной для человека форме.
Отличие 3 фазного счетчика от однофазного заключается в том, что первый способен работать в более загруженных сетях, менее прихотлив в использовании и точнее в показаниях.
Однако для небольших жилых помещений особого смысла в установке трехфазных приборов учета нет, так как все необходимые показания в полной мере сможет отображать и однофазное устройство. В любом случае, на территории нашей страны с одинаковой частотой применяют оба вида электросчетчиков.
Различить между собой трехфазный и однофазный счетчик очень просто – достаточно обратить внимание на то, сколько проводов подходит к прибору:
На сегодняшний день выпускаются два вида трехфазных электрических счетчиков: индукционные и электрические.
Первые работают по принципу отображения показаний электропотребления на специальных прокручивающихся элементах. А вторые отображают данные на электронном табло.
Понятие о коэффициенте трансформации
Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.
Виды электросчетчиков
Каждый хозяин, прежде чем совершить покупку оборудования для контроля расхода электроэнергии, должен понимать, что работа такого устройства будет зависеть от принципа действия. Именно принцип действия счетчиков электроэнергии разделяет их на два основных вида: электронные и индукционные. Электронные электрические счетчики всегда основываются на том, что проводят прямое измерение силы тока и напряжения на силовой линии, проходящей через систему. Шкала такого типа оборудования представляет собой электронный тип циферблата, а также имеет уникальную возможность сохранять значения потребленной электроэнергии во встроенной памяти.
В данном типе счетчика электроэнергии отсутствует механика, а сам ток будет проходить через микросхемы и полупроводники напрямую. К преимуществам данного типа оборудования относят его небольшой размер и вес, удобство в подключении, благодаря разнообразию производимых моделей. Электронные счетчики электроэнергии могут производиться специально для ведения одно- или двухтарифного учета. Их можно устанавливать в специальную автоматизированную систему для коммерческого учета потребляемого электричества.
Несмотря на то, что у данных приборов более широкий ассортимент функционала, чем у другого типа, его интерфейс достаточно простой и понятный. Благодаря цифровым значениям на шкале хозяева получают возможность точно считывать необходимую информацию с электронного счетчика. Данный вид считывающего оборудования имеет меньший гарантийный срок, поскольку он не так надежен как индукционный тип.
Индукционные электрические счетчики являются на текущий момент самыми распространенными. Они представляют собой механическую конструкцию, в которой установлено две специальные катушки – для тока и напряжения. Когда работает этот счетчик, то образовывается магнитное поле, которое и приводит эти катушки в движение. Диски, в свою очередь, начинают двигать шкалу со значениями на циферблате, что в результате выводит объем потребляемой электроэнергии.
Скорость работы системы будет напрямую зависеть от уровня напряжения в электрической сети. Чем больше будет значение мощности, чем выше будет и скорость оборота диска. При подсчете индукционный вид счетчиков энергоснабжения имеет погрешности при подсчете. Для того чтобы повысить класс точности показаний, потребуется дорогостоящая трата. Средний срок службы для такого оборудования обычно составляет около 15 лет.
Во время приобретения можно ознакомиться с техническим паспортом определенной модели электрического счетчика, чтобы узнать обо всех характеристиках и параметрах оборудования, которыми оно обладает. Это позволит подобрать оптимальный образец для вашего дома. Коэффициент трансформации электрического считывающего устройства напрямую не относится к самой конструкции, а является промежуточным показателем, которые преимущественно зависит от трансформатора.
От чего зависит тариф
Тарифы на электроснабжение для населения устанавливаются местным исполнительным органом власти, обладающим полномочиями в сфере их государственного регулирования. За деятельностью регионального ведомства следит Федеральная служба по тарифам (ФСТ), осуществляющая правовую регламентацию цен на услуги и товары и контролирующая их применение.
Стоимость киловатта зависит:
ВНИМАНИЕ! Для каждого субъекта РФ установлены свои тарифы на электроэнергию. Узнать их можно на официальном сайте ФСТ, энергосбытовой компании вашего региона или в квитанции по оплате.