Корреляция спирмена что показывает
Коэффициент корреляции Спирмена
Коэффициент корреляции Спирмена – статистический критерий, который наиболее часто используется при обработке эмпирических данных в курсовых, дипломных и магистерских работах по психологии. Этот критерий относится к типу непараметрических и не требует, чтобы данные были распределены по нормальному закону. Достаточно, если психологические показатели представлены в порядковой шкале, то есть учитывается только тот факт, что один показатель больше или меньше, чем другой.
Расчет коэффициента корреляции Спирмена
При проведении эмпирического исследования в дипломной по психологии для расчета коэффициента корреляции Спирмена удобнее пользоваться статистическими программами. Однако, этот критерий нетрудно рассчитать и вручную.
Пример расчета коэффициента корреляции Спирмена
Предположим, в рамках дипломной работы по психологии проводится исследование влияния климата в коллективе на состояние сотрудников. Одна из задач исследования состоит в выявлении взаимосвязи между климатом и эмоциональным истощением сотрудников.
В таблице приводятся данные, отражающие этапы расчета коэффициентов ранговой корреляции Спирмена. Суть расчета сводится к тому, что от собственно значений переходим к их рангам (ранг отражает положение показателя в общем списке и записывается в виде натурального числа). Далее находятся разности между рангами, эти разности возводятся в квадрат и суммируются.
Эмоциональное истощение (Х)
Психологический климат (Y)
Формула расчёта коэффициента корреляции Спирмена
D – разность между рангами
Сложность расчёта корреляций Спирмена вручную связана с необходимостью вводить поправки на одинаковые ранги, что достаточно трудоемко.
Сумма(D 2 )+Тх+ Тy 51,5+28+4,5
В специальной таблице находим значение критического значения коэффициента ранговой корреляции для выборки из 10 человек и для уровня значимости 0,05:
Следовательно, не существует связи между социально-психологическим климатом в коллективе и степенью истощения сотрудников. Для интерпретации данного результаты (а интерпретировать результаты статистических расчётов в дипломах по психологии очень важно) можно сказать следующее. Возможно, в коллективе сотрудников, где проводилось исследование, существуют социально-психологические или организационные факторы, которые опосредуют влияние климата в коллективе на эмоциональное истощение сотрудников. В связи с этим прямая взаимосвязь между этими показателями нивелируется.
Анализ результатов расчета коэффициентов ранговой корреляции Спирмена
Если коэффициент ранговой корреляции Спирмена вычисляется с помощью статистической программы, то она сама выделяет статистически значимые корреляции при заданном уровне статистической значимости (0,05 или 0,01).
Если расчёт коэффициента ранговой корреляции Спирмена проводится вручную, то после получения эмпирического значения его нужно сравнить с критическим. Критические значения коэффициентов ранговой корреляции Спирмена приводятся в специальных таблицах для разного объема выборки и уровня статистической значимости.
Далее нужно сравнить эмпирический и критический коэффициенты:
Несмотря на различные алгоритмы расчета корреляций Пирсона и Спирмена логика их анализа и интерпретации одинакова.
Различия коэффициентов корреляций Пирсона и Спирмена
На защите дипломных работ по психологии студента могут спросить о причинах, по которым он выбрал тот или иной тип коэффициента корреляции. То есть, важно понимать, чем принципиально различаются коэффициенты корреляции Пирсона и Спирмена.
Не вдаваясь в математические тонкости, можно сказать следующее:
Таким образом, в курсовых, дипломных и магистерских работах по психологии для анализа взаимосвязей между показателями лучше использовать коэффициенты ранговой корреляции Спирмена.
Библиотека постов MEDSTATISTIC об анализе медицинских данных
Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
Критерии и методы
КРИТЕРИЙ СПИРМЕНА
– это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.
Чарльз Эдвард Спирмен
1. История разработки коэффициента ранговой корреляции
Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом, английским психологом, профессором Лондонского и Честерфилдского университетов.
2. Для чего используется коэффициент Спирмена?
3. В каких случаях можно использовать коэффициент Спирмена?
В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.
Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).
Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.
4. Как рассчитать коэффициент Спирмена?
Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:
5. Как интерпретировать значение коэффициента Спирмена?
Также для оценки тесноты связи может использоваться шкала Чеддока:
Абсолютное значение rxy | Теснота (сила) корреляционной связи |
менее 0.3 | слабая |
от 0.3 до 0.5 | умеренная |
от 0.5 до 0.7 | заметная |
от 0.7 до 0.9 | высокая |
более 0.9 | весьма высокая |
Корреляция спирмена что показывает
Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.
— сумма квадратов разностей рангов.
Используя ранговый коэффициент корреляции, рассмотрим следующий пример.
Пример : Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.
Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в табл. 13.
№ учащихся | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Ранги показателей школьной готовности | 3 | 5 | 6 | 1 | 4 | 11 | 9 | 2 | 8 | 7 | 10 |
Ранги среднегодовой успеваемости | 2 | 7 | 8 | 3 | 4 | 6 | 11 | 1 | 10 | 5 | 9 |
1 | -2 | -2 | -2 | 0 | 5 | -2 | 1 | -2 | 2 | 1 | |
1 | 4 | 4 | 4 | 0 | 25 | 4 | 1 | 4 | 4 | 1 |
Подставляем полученные данные в формулу и производим расчет. Получаем:
Для нахождения уровня значимости обращаемся к табл. 20 приложения 6, в которой приведены критические значения для коэффициентов ранговой корреляции.
Подчеркнем, что в табл. 20 приложения 6, как и в таблице для линейной корреляции Пирсона, все величины коэффициентов корреляции даны по абсолютной величине. Поэтому, знак коэффициента корреляции учитывается только при его интерпретации.
Нахождение уровней значимости в данной таблице осуществляется по числу n, т. е. по числу испытуемых. В нашем случае n = 11. Для этого числа находим :
Строим соответствующую «ось значимости»:
При наличии одинаковых рангов формула расчета коэффициента линейной корреляции Спирмена будет несколько иной. В этом случае в формулу вычисления коэффициентов корреляции добавляются два новых члена, учитывающие одинаковые ранги. Они называются поправками на одинаковые ранги и добавляются в числитель расчетной формулы.
Если имеется две группы одинаковых рангов, в каком-либо столбце то формула поправки несколько усложняется:
Пример : Психолог, используя тест умственного развития (ШТУР) проводит исследование интеллекта у 12 учащихся 9 класса. Одновременно с этим, но просит учителей литературы и математики провести ранжирование этих же учащихся по показателям умственного развития. Задача заключается в том, чтобы определить, как связаны между собой объективные показатели умственного развития (данные ШТУРа) и экспертные оценки учителей.
Экспериментальные данные этой задачи и дополнительные столбцы, необходимые для расчета коэффициента корреляции Спирмена, представим в виде табл. 14.
№ учащихся | Ранги тестирования с помощью ШТУРа | Экспертные оценки учителей по математики | Экспертные оценки учителей по литературе | D (второго и третьего столбцов) | D (второго и четвертого столбцов) | (второго и третьего столбцов) | (второго и четвертого столбцов) |
1 | 6 | 5 | 5 | 1 | 1 | 1 | 1 |
2 | 7 | 10 | 8 | -3 | -1 | 9 | 1 |
3 | 4 | 8 | 7 | -4 | -3 | 16 | 9 |
4 | 5 | 4 | 11 | 1 | -6 | 1 | 36 |
5 | 9 | 6 | 3 | 3 | 6 | 9 | 36 |
6 | 12 | 8 | 6 | 4 | 6 | 16 | 36 |
7 | 2,5 | 2 | 11 | 0,5 | -8,5 | 0,25 | 77,25 |
8 | 2,5 | 3 | 11 | -0,5 | -8,5 | 0,25 | 77,25 |
9 | 10 | 8 | 1 | 2 | 9 | 4 | 81 |
10 | 8 | 11 | 3 | -3 | 5 | 9 | 25 |
11 | 11 | 12 | 3 | -1 | 8 | 1 | 64 |
12 | 1 | 1 | 9 | 0 | -8 | 0 | 64 |
Суммы | 78 | 78 | 78 | 0 | 0 | 66,5 | 471,5 |
Проверяем по расчетной формуле. Проверка дает:
В пятом и шестом столбцах таблицы приведены величины разности рангов между экспертными оценками психолога по тесту ШТУР для каждого ученика и величинами экспертных оценок учителей, соответственно по математике и литературе. Сумма величин разностей рангов должна быть равна нулю. Суммирование величин D в пятом и шестом столбцах дало искомый результат. Следовательно, вычитание рангов проведено правильно. Подобную проверку необходимо делать каждый раз при проведении сложных видов ранжирования.
Прежде, чем начать расчет по формуле необходимо рассчитать поправки на одинаковые ранги для второго, третьего и четвертого столбцов таблицы.
В нашем случае во втором столбце таблицы два одинаковых ранга, следовательно, по формуле величина поправки D1 будет:
В третьем столбце три одинаковых ранга, следовательно, по формуле величина поправки D2 будет:
В четвертом столбце таблицы две группы по три одинаковых ранга, следовательно, по формуле величина поправки D3 будет:
Считаем первый ранговый коэффициент с учетом добавок по формуле. Получаем:
Подсчитаем без учета добавки:
Как видим, разница в величинах коэффициентов корреляции оказалась очень незначительной.
Считаем второй ранговый коэффициент с учетом добавок по формуле. Получаем:
Подсчитаем без учета добавки:
И опять, различия оказались очень незначительны. Поскольку число учащихся в обоих случаях одинаково, по табл. 20 приложения 6 находим критические значения при n = 12 сразу для обоих коэффициентов корреляции.
Откладываем первое значение на «оси значимости»:
В первом случае полученный коэффициент ранговой корреляции находится в зоне значимости. Поэтому психолог должен отклонить нулевую Н гипотезу о сходстве коэффициента корреляции с нулем и принять альтернативную Н о значимом отличии коэффициента корреляции от нуля. Иными словами, полученный результат говорит о том, что чем выше экспертные оценки учащихся по тесту ШТУР, тем выше их экспертные оценки по математике.
Откладываем второе значение на «оси значимости»:
Во втором случае коэффициент ранговой корреляции находится в зоне неопределенности. Поэтому психолог может принять нулевую Н гипотезу о сходстве коэффициента корреляции с нулем и отклонить альтернативную Н о значимом отличии коэффициента корреляции от нуля. В этом случае полученный результат говорит о том, что экспертные оценки учащихся по тесту ШТУР не связаны с экспертными оценками по литературе.
Для применения коэффициента корреляции Спирмена, необходимо соблюдать следующие условия:
1. Сравниваемые переменные должны быть получены в порядковой (ранговой) шкале, но могут быть измерены также в шкале интервалов и отношений.
2. Характер распределения коррелируемых величин не имеет значения.
3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.
Таблицы для определения критических значений коэффициента корреляции Спирмена (табл. 20 приложение 6) рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции (табл. 19 приложение 6). Нахождение критических значений осуществляется при k = n.
СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
Корреляционный анализ по методу Спирмена (ранги Спирмена)
Студента-психолога (социолога, менеджера, управленца и др.) нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых группах.
В математике для описания связей между переменными величинами используют понятие функции F, которая ставит в соответствие каждому определенному значению независимой переменной X определенное значение зависимой переменной Y. Полученная зависимость обозначается как Y=F(X).
При этом виды корреляционных связей между измеренными признаками могут быть различны: так, корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна — если с увеличением или уменьшением одной переменной X,вторая переменная Y в среднем либо также растет, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами.
Корреляция будет положительной, если с увеличением переменной X переменная Y в среднем также увеличивается, а если с увеличением X переменная Y имеет в среднем тенденцию к уменьшению, то говорят о наличии отрицательной корреляции. Возможна ситуация, когда между переменными невозможно установить какую-либо зависимость. В этом случае говорят об отсутствии корреляционной связи.
Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.
Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:
где n — количество ранжируемых признаков (показателей, испытуемых);
D — разность между рангами по двум переменным для каждого испытуемого;
D2 — сумма квадратов разностей рангов.
Критические значения коэффициента корреляции рангов Спирмена представлены ниже:
Знак коэффициента корреляции очень важен для интерпретации полученной связи. Если знак коэффициента линейной корреляции — плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.
Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания — произволен. Это может быть как переменная X, так и переменная Y. Однако если считается, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот.
Рассмотрим пример корреляции Спирмена
Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.
Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в таблице:
Подставляем полученные данные в вышеприведенную формулу, и производим расчет. Получаем:
Для нахождения уровня значимости обращаемся к таблице «Критические значения коэффициента корреляции рангов Спирмена,» в которой приведены критические значения для коэффициентов ранговой корреляции.
Строим соответствующую «ось значимости»:
Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью — иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н0) гипотезу о сходстве и принять альтернативную (Н1) о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.