Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

ДНК и гены

ДНК ПРОКАРИОТ И ЭУКАРИОТ

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С) и фосфатной (Ф) группы (фосфодиэфирные связи).

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т), гуанин — только с цитозином (Г-Ц). Именно эти пары и составляют «перекладины» винтовой «лестницы» ДНК (см.: рис. 2, 3 и 4).

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты – это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания, соединенного с пятиуглеродным углеводом (пентозой) – дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H2PO3–).

Азотистые основания бывают двух типов: пиримидиновые основания – урацил (только в РНК), цитозин и тимин, пуриновые основания – аденин и гуанин.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль. Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей. Аденин всегда соединяется с тимином, а цитозин – с гуанином. Это называется правилом комплементарности (см. принцип комплементарности ).

Правило комплементарности:

A–T G–C

Например, если нам дана цепь ДНК, имеющая последовательность

3’– ATGTCCTAGCTGCTCG – 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении – от 5’-конца к 3’-концу:

5’– TACAGGATCGACGAGC– 3’.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК – это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез – это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α ( Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ ( Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.

Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см. видео →

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5’→3′ синтезирует праймер (РНК-затравку) – последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Транскрипция – это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК – эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ – 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’– ATGTCCTAGCTGCTCG – 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’– TACAGGATCGACGAGC– 3’,

а синтезируемая с нее РНК – последовательность

3’– AUGUCCUAGCUGCUCG – 5’.

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

Таблица 1. Стандартный генетический код

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

Свойства генетического кода

1. Триплетность. Каждая аминокислота кодируется последовательностью из трех нуклеотидов – триплетом или кодоном.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

2. Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

3. Неперекрываемость. Один нуклеотид не может входить одновременно в два триплета.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

4. Однозначность. Один кодон может кодировать только одну аминокислоту.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

5. Вырожденность. Одна аминокислота может кодироваться несколькими разными кодонами.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

6. Универсальность. Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’– CCGATTGCACGTCGATCGTATA– 5’.

Матричная цепь будет иметь последовательность:

5’– GGCTAACGTGCAGCTAGCATAT– 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’– CCGAUUGCACGUCGAUCGUAUA– 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’– AUAUGCUAGCUGCACGUUAGCC– 3’.

Теперь найдем старт-кодон AUG:

5’– AU AUG CUAGCUGCACGUUAGCC– 3’.

Разделим последовательность на триплеты:

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Найдем стоп-кодон и согласно таблице генетического кода запишем последовательность аминокислот:

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Центральная догма молекулярной биологии звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК – на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

Термин «геном» был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент». Позднее эта концепция была расширена до определения «один ген — один полипептид», поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена, кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?

ДНК прокариот устроена более просто: их клетки не имеют ядра, поэтому ДНК находится непосредственно в цитоплазме в форме нуклеоида.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиКак известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру – нуклеоид. Хромосома прокариота Escherichia coli, чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиБактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Источник

Трансляция: как и зачем ингибировать биосинтез белка в собственных клетках?

Трансляция: как и зачем ингибировать биосинтез белка в собственных клетках?

3D-структура эукариотической рибосомы

визуализация автора статьи с использованием скрипта проф. Ненада Бана на основе структуры рибосомы 4V88 [17]

Автор
Редакторы

Статья на конкурс «Био/Мол/Текст»: Биосинтез белка (трансляция) — ключевой процесс клеточного метаболизма, в ходе которого специальные молекулярные машины — рибосомы, — раскодируя последовательность нуклеотидов в матричной РНК, производят полипептидную цепь. Как и к любым другим биомолекулам, к компонентам трансляционного аппарата можно подобрать ингибиторы. Подавление трансляции в эукариотических клетках с помощью малых молекул в последние годы всё чаще применяется при терапии различных заболеваний (в том числе генетических). Казалось бы, для чего ингибировать процесс, который обеспечивает клетку строительным материалом, ферментами, регуляторами и прочими необходимыми для жизни компонентами? Дело в том, что часто при раковой трансформации или вирусной инфекции рибосомы начинают «подыгрывать» врагу, смещая трансляцию в сторону «нежелательных» мРНК. Например, вирусы, чтобы качнуть чашу весов в свою сторону, могут использовать множество интересных механизмов для модификации клеточной трансляции. Таким образом, лекарства, которые подавляют биосинтез белка, могут намного сильнее затормозить рост клеток, вышедших из-под контроля, нежели «законопослушных». Это их свойство и используется при терапии.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Конкурс «Био/Мол/Текст»-2021/2022

Эта работа опубликована в номинации «Своя работа» конкурса «Био/Мол/Текст»-2021/2022.

Партнер номинации — компания Cytiva.

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Генеральный партнер конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Я работаю в лаборатории системной биологии старения в отделе взаимодействия вирусов с клеткой НИИ физико-химической биологии имени А.Н. Белозерского МГУ. На втором курсе моя курсовая работа была связана с поиском ингибиторов трансляции у эукариот и созданием базы таких ингибиторов. Данная статья подготовлена по материалам обзора, опубликованного в спецвыпуске журнала «Биохимия» [1].

Молекулярный аппарат трансляции и его консервативность

Трансляционный цикл на множестве этапов может быть нарушен или замедлен многочисленными и разнородными по химическому строению ингибиторами. Ключевые компоненты трансляционного аппарата клетки — это рибосомы и факторы трансляции (белки, помогающие рибосоме реализовывать разные этапы трансляционного цикла), а также большое количество вспомогательных белков, необходимых для обеспечения синтеза нужными материалами: например, аминоацил-тРНК-синтетазы (АРСазы) — ферменты, соединяющие тРНК с соответствующей ей аминокислотой; или регуляторы биосинтеза белка — компоненты сигнальных путей, связанных с трансляцией. При подборе ингибиторов нельзя не учитывать, что многие из этих молекул есть у всех живых организмов, и некоторые из них довольно консервативны. А значит, одни и те же вещества могут действовать как на про-, так и на эукариот, что не всегда приемлемо.

Каждый живой организм на Земле может быть отнесен к одному из трех доменов жизни: это максимально удаленные друг от друга в эволюционном смысле группы — эукариоты (здесь ищите самые известные царства: животных, растений и грибов), бактерии и археи [2]. Эта удаленность означает, что они давно разошлись (то есть их последний общий предок жил давно [3]), и у представителей групп накопилось множество отличий. Но есть и признаки, по которым представители различных доменов похожи друг на друга. Речь идет об основополагающих признаках: например, способности удваивать ДНК, синтезировать на ее основе РНК и в конце концов получать закодированный в ней белок. Трансляция относится к самым консервативным биологическим процессам.

При ближайшем рассмотрении оказывается, что устройство белоксинтезирующего аппарата довольно схоже у представителей разных доменов. К примеру, основные факторы инициации и элонгации у бактерий имеют гомологов у архей, а рибосомы архей по многим аспектам строения очень напоминают рибосомы эукариот (что даже позволило создать из рибосом дрожжей гибридные рибосомы, в которых одна из субъединица очень напоминала рибосомную субъединицу архей [4]). В пределах этих трех доменов есть отличия, но мы видим, что трансляционная машинерия в целом очень консервативна, и таких отличий не так много. Это является несомненным свидетельством общности (монофилетичности) происхождения жизни.

Хотя это зависит от того, какие критерии для отнесения к живому используются. В зависимости от них под определение «живое» может попасть даже клетка из компьютерной игры Конвея «Жизнь», но под критерии классического определения жизни подпадают всё же только представители этих трех доменов.

Ингибиторы трансляции как антибиотики

Подробнее про различные классы антибиотиков и про то, как они действуют, можно прочитать в статье «Биомолекулы» «Антибиотики vs Бактерии. “Война Бесконечности” или всему есть предел?» [6].

Однако в этой статье речь пойдет об ингибиторах эукариотической трансляции — ведь многие из них служат мощными противоопухолевыми и антивирусными препаратами, используются для иммуносупрессии при пересадке органов или для обезболивания. Некоторые из этих веществ рассматривают даже как возможное «лекарство от старости». Но перед тем как переходить к их рассмотрению, нам придется вспомнить основные этапы трансляционного цикла.

Трансляционный цикл

Чтобы оценить все разнообразие ингибиторов биосинтеза белка, давайте для начала ознакомимся с теми этапами трансляционного цикла, на которые может быть направлено их действие. Эти этапы изображены на рисунке 1 (кликнув на элемент, вы можете прочитать про него подробнее в «Википедии»). Кстати, некоторые этапы этого сложного процесса до сих пор плохо изучены.

Рисунок 1. Трансляционный цикл эукариот (с подсказками!) и избранные сигнальные каскады, влияющие на него. Также показаны самые известные и изученные ингибиторы цикла (черная рамка означает принципиально другой механизм действия). Вещества сгруппированы в соответствии со стадиями синтеза белка, в которых участвуют их мишени. Стадии обозначены кодами. Инициация трансляции: i.1 — связывание eIF2 с Met-тРНК и образование тройного комплекса eIF2/Met-тРНКi/GTP (TC); i.2 — взаимодействие eIF4A и eIF4G; i.3 — взаимодействие eIF4E и eIF4G; i.4 — связывание eIF4E с m 7 G-кэпом на 5′-конце мРНК; i.5 — ингибирование хеликазной (расплетающей мРНК) активности eIF4A при посадке eIF4F на мРНК и последующем рибосомном сканировании; i.6 — узнавание AUG-кодона при сканировании; i.7 — взаимодействие eIF5B с 60S-субъединицей; i.8 — взаимодействие eIF6 с 60S-субъединицей; i.9 — присоединение 60S-субъединицы к 48S преинициаторному комплексу (48S PIC) с образованием 80S инициаторного комплекса (80S IC). Элонгация и сопутствующие реакции: e.1 — аминоацилирование тРНК; e.2 — диссоциация eEF1A/GDP после доставки аминоацил-тРНК (Аа-тРНК); e.3 — продвижение полипептида в рибосомном тоннеле; e.4 — декодирование; e.5 — пептидилтрансферазная реакция; e.6 — транслокация; e.7 — диссоциация eEF2/GDP после транслокации. Терминация: t.1 — узнавание стоп-кодона; t.2 — гидролиз пептидил-тРНК. Рециклинг: r.1 — диссоциация 60S-субъединицы. Коды модуляторов сигнальных каскадов: s.1–s.3 — активаторы киназ фактора eIF2; s.4 — ингибиторы фосфатаз фактора eIF2; s.5 — ингибиторы киназы PI3K; s.6 — ингибиторы активного центра киназы mTOR; s.7 — аллостерические ингибиторы mTOR в составе комплекса mTORC1. Рисунок позаимствован из нашей статьи в журнале «Биохимия» [1]. Более полная его версия с поясняющими таблицами доступна на сайте базы ингибиторов EuPSIC

Схема может показаться сложной, но в действительности это не так. Попробуйте выхватить взглядом желтую 40S-субъединицу (в свободном от других компонентов трансляции виде ее можно найти рядом со стадией i.1) и пройтись по циклу, как в настольной игре, посмотрев на все, что успевает с ней за это время произойти. Особенно любознательным предлагаем покликать по элементам схемы и прочитать о каждом из этапов дополнительно.

Этапы трансляции

Трансляционный цикл принято подразделять на несколько этапов:

Отдельно происходит активация аминокислот с помощью аминоацил-тРНК-синтетаз (см. e.1 на рисунке 1).

Некоторые трансляционные факторы известны уже очень давно, для них понятна функция, известны ортологи у архей и бактерий (подробнее про гомологичные взаимоотношения генов можно прочитать здесь [7]) и выяснено, являются ли они строго необходимыми для синтеза белка — ведь некоторые вирусные мРНК, например, могут обходиться без целого ряда факторов инициации трансляции [8], [9]. Роль других участников была открыта относительно недавно. Примером таких белков служат факторы DENR и MCTS1 (см. область рециклинга (r) на рисунке 1), изучением которых, кстати, занимается наша лаборатория.

На рисунке 1 (см. s.1, s.2) также изображена часть путей внутриклеточного сигналинга, которые непосредственно регулируют трансляцию. Кроме того, существует еще и сложнейший процесс сборки рибосомы из рибосомной РНК и белков, который протекает по большей части в ядре. Его также можно подавить низкомолекулярными веществами, но о них известно гораздо меньше, а их специфичность часто оставляет желать лучшего.

Типы ингибиторов

С ингибиторами трансляции удобно знакомиться, если классифицировать их согласно мишеням, на которые они воздействуют.

Ингибиторы эукариотической рибосомы

Многие из ингибиторов действуют на рибосомы. При этом они могут быть универсальными (подавлять трансляцию у всех доменов живого), а могут — специфичными (например, к рибосоме эукариот или даже каких-то узких таксономических групп). Специфичность действия, как правило, определяется тонкими различиями в строении места связывания: структурные исследования показывают, что часто достаточно замены одного нуклеотида в рРНК или разницы в единственной аминокислотной позиции рибосомного белка, чтобы конфигурация участка не позволяла ингибитору связаться. Подавляющее большинство ингибиторов рибосомы действует на стадии элонгации, однако существуют и другие типы, перечисленные в таблице 1 (заметьте, что пункты могут перекрываться).

Таблица 1. Типы рибосомных ингибиторов трансляции.

Типы ингибиторовКлассы химических веществ и известные представителиКраткие комментарии
Рибосом-направленные ингибиторы инициации трансляцииЭдеин, MDMP, eIFsixty-4Небольшая группа ингибиторов, механизмы действия которых сильно различаются. Основной механизм — нарушение взаимодействия с лигандами: блокирование связывания факторов инициации или нарушение аккомодации инициаторной тРНК (рис. 1: i.6–i.9).
Рибосом-направленные ингибиторы элонгации (кроме веществ, вызывающих ошибки декодирования)Анизомицин, гомохаррингтонин, трихотецины, квассиноиды, амикумацин A, циклогексимид, эметин, лиссоклимид, гигромицин B, тетраценомицин X и другиеБольшая и разнообразная по химическому строению и механизмам действия группа. Могут действовать на транспептидацию, транслокацию, вызывать преждевременную терминацию или блокировать пептидный тоннель. Как правило, связываются с функциональными сайтами рибосомы. Эти сайты вместе с избранными ингибиторами, присоединенными к рибосоме, можно изучить на рис. 5. Интересно, что некоторые ингибиторы элонгации, действующие на ее самые начальные стадии, часто путают с ингибиторами инициации. Самым известным таким ингибитором является гомохаррингтонин (рис. 2). Все ингибиторы, представленные на рисунке 5, кроме TC007 и паромомицина, относятся именно к данному типу (рис. 1: e.3, e.5, e.6).
Вещества, вызывающие ошибки декодированияАминогликозиды (преимущественно с 2-DOS кольцом) и ряд других ингибиторов [6]Основное место связывания таких веществ на эукариотической рибосоме — декодирующий центр малой субъединицы (спираль h44, см. рис. 5). Это связывание вызывает стабилизацию той конформации, которую рибосома должна принимать при наличии «правильной» аминоацил-тРНК в А-сайте. В результате реакция по переносу остатка аминокислоты может произойти, даже если там находится не соответствующая кодону тРНК, что вызывает ошибки декодирования, а также «проскок» стоп-кодона (подробнее это описано ниже на примере аталурена) — рис. 1: e.4.
Рибосомные ингибиторы, влияющие на терминациюАминогликозиды, гиролинСовсем небольшая группа ингибиторов. У эукариот вещества, специфично блокирующие собственно терминацию (высвобождение полипептида), изучены плохо. Поэтому список ингибиторов t.1 в основном представлен веществами из предыдущего списка (e.4), т.к. их влияние на точность декодирования сказывается в том числе и на узнавании стоп-кодона, что вызывает его «проскок». Подтвержденным ингибитором высвобождения пептида у эукариот является, пожалуй, пока только гиролин (рис. 1: t.1, t.2).
Ингибиторы рибосомного рециклингаНекоторые аминогликозиды, бацифелацин и неоквассинПока что веществ, которые бы специфично действовали на эту стадию, не обнаружено, но, возможно, это просто вопрос времени. Механизмы рециклинга и вовлеченные в него факторы сильно различаются у эукариот и бактерий, а у архей эта стадия изучена особенно плохо (рис. 1: r.1).

Если классифицировать по сайтам связывания, то выделяют: ингибиторы пептидилтрансферазного центра; ингибиторы транслокации, узнающие E-сайт; ингибиторы, связывающиеся в пептидном тоннеле; ингибиторы, взаимодействующие с декодирующим центром; ингибитор, связывающийся с ГТФаза-активирующим центром (пока достоверно описан только один такой пример).

Пока не так много веществ этого типа допущены до практического применения (самое известное из них — гомохаррингтонин (рис. 2)), но их число постепенно растет. Клинические и доклинические испытания проходили, например, такие ингибиторы пептидилтрансферазного центра, как ликорин, нарциклазин и бруцеантин, а ингибитор транслокации эметин используется как антигельминтное и противомалярийное средство.

Интересные случаи применения

Гомохаррингтонин. Рибосом-направленные ингибиторы элонгации

Гомохаррингтонин — ингибитор пептидилтрансферазного центра в виде полусинтетического аналога омацетаксина мепесукцината (продаваемого под торговой маркой Synribo; рис. 2) активно применяется для лечения хронического миелоидного лейкоза, а также проходит испытания в терапии ряда других онкологических заболеваний. Кроме того, его широко используют в научной работе: его способность прекращать трансляцию новоинициировавших рибосом (при этом не трогая рибосомы, которые уже успели синтезировать несколько пептидных связей) применяется для картирования старт-кодонов в мРНК.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рисунок 2. «Синрибо». Применяется для лечения хронического миелоидного лейкоза у людей, лечение которых ингибиторами тирозинкиназ не дало желаемого эффекта. Одобрен одновременно как американским (FDA), так и европейским (EMA) медико-биологическим агентствами.

Аталурен и гентамицин. Вещества, вызывающие ошибки декодирования

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рисунок 3. Аталурен. Индуцирует «проскакивание» стоп-кодонов. Лекарство применяется для лечения людей с генетическими заболеваниями, вызванными появлением преждевременного стоп-кодона в важных генах (нонсенс-мутациями). В том числе зарегистрирован и в России. К сожалению, из-за очень высокой цены — от пяти до семи тысяч евро за упаковку, которой хватит на месяц, — не все могут получить доступ к этому лечению.

Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

Рисунок 4. Гентамицин. Пока что препарат прошел клинические испытания только как антибиотик, однако у его производных есть потенциал и в терапии генетических заболеваний. Препарат, продаваемый в аптеках, представляет собой смесь более четырех похожих веществ. Его стоимость куда ниже, чем у аталурена: купить тюбик мази для наружного применения можно за 40 рублей. Однако в нынешнем виде гентамицин нельзя принимать в дозах, достаточных для устранения эффектов нонсенс-мутаций: из-за воздействия на рибосомы митохондрий он имеет побочные эффекты в виде нефро- и ототоксичности.

Более 10% генетических заболеваний вызвано однонуклеотидными мутациями, которые привели к появлению преждевременного стоп-кодона в кодирующей части какого-либо важного гена (такие мутации называют нонсенс-мутациями). К примеру, нонсенс-мутации в гене белка дистрофина могут вызывать миодистрофию Дюшенна. Интересно, что механизм терминации на таком случайно возникшем, не прошедшем эволюционный отбор стоп-кодоне несколько отличается от нормального. Это связано с тем, что получившийся «преждевременный» сигнал терминации чаще всего находится далеко от 3′-конца мРНК и расположен не в последнем экзоне (как «настоящие» стоп-кодоны), а также лишен нужного нуклеотидного контекста. В клетке действует специальная защитная система, которая обнаруживает «неправильную» терминацию на таком стоп-кодоне и отправляет транскрипты с нонсенс-заменой на деградацию. Однако примерно в одном из 100–10000 случаев (в зависимости от условий) рибосома проскакивает стоп-кодон, вместо терминации вставляя в пептид какую-либо аминокислоту и продолжая синтез [10], [11]. Долю таких сквозных прочтений можно увеличить с помощью специальных ингибиторов, самыми известными из которых являются аталурен и аминогликозиды, к коим относится гентамицин (рис. 4). Несмотря на то, что сквозные прочтения могут вызывать несколько классов веществ, обычно эта активность ассоциируется с самым большим классом — аминогликозидами. Эти вещества сильнее действуют на преждевременные стоп-кодоны, чем на «правильные», благодаря чему они могут иметь потенциал в терапии заболеваний, вызываемых нонсенс-мутациями. Однако аминогликозиды известны своей токсичностью — ведь они, помимо индукции сквозного прочтения, еще и снижают точность работы рибосомы. Из веществ неаминогликозидной природы, действующих аналогичным образом, лучше всего изучен аталурен (рис. 3), однако он также не очень хорошо показал себя в клинических испытаниях; более того, в некоторых работах приведены аргументы в пользу того, что это вещество может и вовсе не работать так, как заявлено, а его эффекты в экспериментах были связаны с влиянием на стабильность белка-репортера. Поэтому поиски индукторов ошибок декодирования, приемлемых для терапии наследственных заболеваний, продолжаются.

Чтобы понять, как именно ингибиторы могут подавлять активность рибосомы, полезно вспомнить ее общее строение. Это удобно сделать с помощью интерактивного аплета (см. рис. 5).

Рисунок 5. Пристальный взгляд на эукариотическую рибосому. В верхней кнопочной панели можно изучить структурные элементы рибосомы. Для того чтобы узнать о структурном элементе или сайте связывания, наведите курсор на кнопку. В нижней панели можно найти распространенные ингибиторы, которые действуют на разные части эукариотической рибосомы, визуализированные в предыдущем разделе. В виде на лиганд взаимодействующие основания выделены оранжевым. Встроенный в статью этот апплет очень маленький, поэтому рекомендуем открыть полноэкранную версию.

Для показа структурных элементов использована структура дрожжевой рибосомы, полученная методом криоэлектронной микроскопии группой Р. Бекманна (6SNT). Для визуализации используется веб-плагин MolStar.

Ингибиторы трансляционных факторов

Трансляционные факторы — белки, помогающие рибосоме реализовывать разные этапы трансляционного цикла. Чаще всего эти факторы жизненно необходимы для нормального синтеза белка в клетках или митохондриях/пластидах, которые, как правило, тоже имеют свой трансляционный аппарат.

Эта группа веществ взаимодействует с факторами в растворе, блокируя их активность или препятствуя присоединению к рибосоме (во втором случае они могут контактировать не только с фактором, но и с рибосомой, что приводит к неоднозначности в классификации: иногда их относят к ингибиторам рибосомы).

Ингибиторы факторов инициации трансляции

Инициация трансляции в эукариотических клетках устроена сложнее, чем у бактерий: факторов инициации здесь больше, и многие из них являются эукариот-специфичными. Поэтому и набор мишеней для ингибиторов довольно разнообразен. Со всем многообразием факторов инициации и их набором у трех доменов живого удобно ознакомится в таблице 2.

Наиболее перспективными с точки зрения применения в клинике блокаторами этой стадии являются, пожалуй, ингибиторы РНК-хеликазы eIF4A, которые демонстрируют яркую антивирусную активность. В частности, два вещества, относящиеся к семейству рокаглатов, — сильвестрол и зотатифин — в данный момент проходят клинические испытания на больных COVID-19 [12], [13]. Вообще, биосинтез белка является «ахиллесовой пятой» многих вирусов, поскольку большинству клеток обычно не нужно синтезировать белки в таких количествах, как при вирусной инфекции, и незараженная клетка может безболезненно пережить невысокие концентрации трансляционных ингибиторов, которые убьют инфицированную или просто заблокируют размножение вируса.

Таблица 2. Сходства и различия в наборах факторов инициации трансляции у разных доменов живого. Инициация является самой неконсервативной стадией трансляции в плане механизма и участвующих белков. На данный момент функциональная гомология некоторых архейных белков с эукариотическими факторами установлена нечетко, исследования в этой области продолжаются. Источник: [14], с изменениями.

IF3* Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки

* — IF3 бактерий не гомологичен a/eIF1, но очень похож на него по пространственной структуре.

** — Каталитические γ- и ε-субъединицы у архей отсутствуют, поэтому вопрос о наличии целостного aIF2B и даже об участии остальных субъединиц в трансляции неясен: на этот счет в научной литературе до сих пор ведутся споры.

Ингибиторы факторов элонгации

На данный момент известно большое количество ингибиторов фактора eEF2 (транслоказы), однако некоторые вещества действуют и на eEF1A, доставляющий аминоацил-тРНК. Бóльшая часть и тех, и других препятствует диссоциации факторов с рибосомы после гидролиза ГТФ, что блокирует цикл элонгации. Некоторые их этих ингибиторов (сордарин и его производные) обладают специфичностью к eEF2 грибов, но не связываются с фактором из человеческих клеток, что позволяет использовать их в качестве противогрибковых средств. Среди известных веществ из этой категории нельзя не упомянуть плитидепсин (аплидин), который, согласно работе, недавно опубликованной в журнале Science, показывает хорошие результаты в борьбе с вирусом SARS-CoV-2 [15].

Ингибиторы аминоацил-тРНК-синтетаз

Помимо рибосом и фактор-направленных ингибиторов, специфичное влияние на биосинтез белка могут оказывать вещества, блокирующие вспомогательные компоненты трансляционной машинерии — в первую очередь ингибиторы аминоацил-тРНК-синтетаз (АРСаз). Фундаментальной основой трансляции является генетический код (соответствие между триплетами нуклеотидов и аминокислотами). Осуществляют это соответствие не столько рибосома (хотя в ее функции, разумеется, входит контроль правильного декодирования триплетов — то есть соответствия тРНК кодону в мРНК), сколько АРСазы, навешивающие аминокислотный остаток на нужную тРНК. Из примерно 20 аминоацил-тРНК-синтетаз эукариот (точное их число может варьировать от вида к виду) специфичные ингибиторы известны как минимум для семи.

При ингибировании АРСаз в клетке уменьшается концентрация Аа-тРНК, и темпы трансляции снижаются. От этого сильнее всего страдают клетки с высокой интенсивностью белкового синтеза — к примеру, иммунные и раковые. Поэтому ингибиторы АРСаз имеют важное медицинское значение: они обладают иммуносупрессорным эффектом и применяются при лечении опухолей. Их также используют в качестве фунгицидов и антималярийных препаратов. Большинство ингибиторов этого типа высокоспецифичны по отношению к конкретным АРСазам, однако вещество пурпуромицин препятствует присоединению аминокислотного остатка к любой тРНК. На рисунке 1 ингибиторы АРСаз обозначены e.1.

Самыми известными являются следующие пары «ингибитор—АРСаза»: таваборол и лейцил-тРНК-синтетазы, боррелидин и треонил-тРНК-синтетазы. Таваборол уже прошел клинические испытания и применяется для лечения грибка ногтей, т.к. оказалось, что он способен инактивировать редактирующий активный центр лейцил-тРНК-синтетазы грибов, при этом не ингибируя АРСазу человека. Боррелидин рассматривается в качестве противоракового препарата, потому что он обладает антиангиогенной активностью, что мешает некоторым типам рака «проращивать» сосуды к опухолям для их эффективного питания. К сожалению, применению ингибиторов АРСаз в клинике часто мешает низкая биодоступность, которую пытаются повысить с помощью эффективных методов доставки лекарства.

Ингибиторы сигнальных путей, связанных с регуляцией трансляции

Существует несколько сигнальных путей, которые тонко регулируют трансляцию на разных уровнях. Эти пути образуют сложную сеть и на схеме отображены лишь частично. Ключевые регуляторные каскады, контролирующие эффективность трансляции в клетке, — это пути PI3K/AKT/mTOR и MAPK/ERK/Mnk, а также набор киназ α-субъединицы фактора eIF2. Ингибиторы mTOR представляют особую ценность из-за выраженных комплексных эффектов на организм, у них множество применений в медицине: к примеру, они используются при лечении рака или как иммуносупрессоры при трансплантациях органов. Самый известный пример лекарств последнего типа — это рапамицин (сиролимус), который ингибирует один из двух комплексов киназы mTOR (mTORC1). С этим лекарством, а также с другими ингибиторами mTOR связаны и надежды на замедление темпов старения: показано, что некоторые из этих веществ ощутимо продлевают период здоровой жизни у мышей [16]. На рисунке 1: s.1–s.9.

Подробнее ознакомиться с ингибиторами эукариотической трансляции можно в научном обзоре, опубликованном в спецвыпуске журнала «Биохимия» [1], и на специализированном сайте EuPSIC, одним из создателей которых является автор данной статьи.

Немного о научной группе

Наша лаборатория расположена в отделе взаимодействия вирусов с клеткой НИИ физико-химической биологии имени А.Н. Белозерского МГУ. Основные направления исследований — изучение механизмов биосинтеза белка, молекулярная вирусология и анализ возрастных изменений в живых организмах на молекулярном и клеточном уровне. В отделе работают несколько научных сотрудников, аспирантов и множество студентов, руководитель отдела — к.б.н. Сергей Дмитриев. В исследованиях мы применяем широкий арсенал методов молекулярной биологии, генной инженерии, биохимии, системной биологии и биоинформатики. Со списком публикаций отдела можно ознакомиться на сайте МГУ.

Рисунок 6. Структуры из нашей лаборатории. А пока можете посмотреть на структуры белков, которыми занимается лаборатория и которые были получены нашими партнерами с помощью рентгеноструктурного анализа и криоэлектронной микроскопии. Также вы можете открыть полноэкранную версию апплета.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

БактерииАрхеиЭукариотыФункция
aIF2 (α, ß, γ) [3V11] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиeIF2 (α, ß, γ) [6FYX] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиСвязывается с инициаторной Met-тРНКi и доставляет ее на рибосому при инициации трансляции, при распознавании старт-кодона гидролизует связанный с ним ГТФ.
aIF1 [4MO0] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиeIF1 [6FYX] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиОтвечает за распознавание правильного старт-кодона (у бактерий также за узнавание инициаторной тРНК).
IF1 [3I4O] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиaIF1A [4MNO] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиeIF1A [6FYX] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиЗащищает А-сайт рибосомы от преждевременной посадки второй тРНК, участвует в распознавании старт-кодона и в стабилизации связывания других факторов (IF2/eIF5B и др.).
IF2 [5LMV] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиaIF5B [1G7T] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиeIF5B [4N3N] Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Смотреть картинку Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Картинка про Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белки. Фото Крупные структурированные молекулы рнк являются более стабильными катализаторами чем белкиСтабилизирует связывание Met-тРНКi (у бактерий — fMet-тРНКi) с рибосомой, участвует в присоединении большой субъединицы, контролируя его правильность путем своевременного гидролиза ГТФ.
eIF5Является ГТФаза-активирующим белком для фактора eIF2, участвует в узнавании старт-кодона.
aIF2B (α, ß, δ?)**aIF2B (α, ß, γ, δ, ε)Обеспечивает обмен «использованного» ГДФ, связанного с eIF2, на ГТФ.
eIF3 (от 6 до 13 субъединиц у разных эукариот)Принимает участие в связывании 40S-субъединицы с мРНК и в привлечении других факторов.
(aIF4A?)eIF4F (4A, 4G, 4E)У эукариот состоит из трех субъединиц: eIF4E связывает 5′-кэп (модифицированный гуанозин на 5′-конце мРНК эукариот), РНК-хеликаза eIF4A разворачивает вторичную структуру мРНК, а eIF4G обеспечивает привлечение преинициаторного комплекса и сканирование; играет ли aIF4A архей какую-то роль в инициации трансляции, доподлинно неизвестно.
eIF4BПомогает РНК-хеликазе eIF4A