Кубовая жидкость что это
Большая Энциклопедия Нефти и Газа
Кубовая жидкость
Кубовая жидкость из колонны 8 насосом 10 подается в рекуперативный теплообменник 6, а затем в колонну 17 для отгонки толуола от высококипящих углеводородов. Остальное количество дистиллята через рекуперативный теплообменник 5, холодильники 23 и 24, осушители 25 поступает в сборник 26, из которого насосом 27 направляется на приготовление шихты в отделение полимеризации. Кубовая жидкость из колонны 17 насосом 19 направляется на переработку. [2]
Кубовая жидкость отводится из вертикального стакана 3, припаянного к днищу колонны. Сверху колонна частично закрыта конусом 4, предназначенным для распределения стекающего из конденсатора жидкого азота между азотными карманами и тарелками нижней колонны. [4]
Кубовая жидкость из колонны 5 через переохладитель 7 дросселируется в середину верхней колонны 6, где подвергается окончательному разделению на жидкий кислород, сливаемый из конденсатора в цистерну, и газообразный азот, отводимый через переохладители 7 и 8 в регенераторы 3, а затем в атмосферу. [7]
Кубовая жидкость отводится из вертикального стакана 3, припаянного к днищу колонны. Сверху колонна частично закрыта конусом 4, предназначенным для распределения стекающего из конденсатора жидкого азота между азотными карманами и тарелками нижней колонны. [9]
Кубовая жидкость из нижней колонны, пройдя испаритель газлифта 6, дросселируется в верхнюю колонну 5, где разделяется на газообразный азот высокой чистоты и жидкий кислород. Азот из верхней части колонны 5 направляется в межтрубное пространство переохладителя 3, основного теплообменника 9 и выдается потребителю. Часть жидкого кислорода из нижней части верхней колонны поступает в испаритель газлифта 6, где частично испаряется и, пройдя отделитель пара 4, поступает в межтрубное пространство конденсатора. Здесь жидкий кислород испаряется, нагревается от сжатого воздуха н в виде газа под давлением идет в баллоны наполнительной рампы. [10]
Кубовая жидкость из колонны 21 содержит ацетофенон, диме-тилфенилкарбинол, димер ос-метилстирола и смолы. [12]
Кубовая жидкость из К-1 поступает самотеком в колонну К-3. МПа и подачи водяного пара в переток из К-1 в К-3 происходит отпарка легких фракций. [14]
Кубовая жидкость из сборника 15 передается в куб 18, где подвергается перегонке с паром для очистки от смол. Отгонку ведут в вакууме до исчезновения нитропродуктов в погоне. Смолу, остающуюся в кубе, выливают и сжигают. [15]
Колонна ректификационная
Ректификационная колонна — аппарат, предназначенный для разделения жидких смесей, составляющие которых имеют различную температуру кипения.
Классическая колонна представляет собой вертикальный цилиндр с контактными устройствами внутри.
Ректификация (от лат. rectus— прямой и facio— делаю) — это тепломассообменный процесс, в результате которого конденсация составляющих пара происходит раздельно.
Упрощенная технологическая схема непрерывной ректификации
Исходная смесь, нагретая до температуры питания tf в паровой, парожидкостной или жидкой фазе поступает в колонну в качестве питания (Gf).
Зону, в которую подаётся питание, называют эвапорационной, т. к. там происходит процесс эвапорации — однократного отделения пара от жидкости.
Пары поднимаются в верхнюю часть колонны, охлаждаются и конденсируются в холодильнике-конденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения.
Таким образом, в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз).
Стекая вниз по тарелкам, жидкость обогащается высококипящими компонентами, а пары, чем выше поднимаются в верх колонны, тем более обогащаются легкокипящими компонентами.
Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом.
Продукт, отводимый с верха колонны, называют дистиллятом.
Часть дистиллята, сконденсированного в холодильнике и возвращенного обратно в колонну, называют орошением или флегмой.
Отношение количества возвращемой в колонну флегмы и количества отводимого дистиллята называется флегмовым числом.
Для создания восходящего потока паров в кубовой (нижней, отгонной) части ректификационной колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся пары подают обратно под нижнюю тарелку колонны.
Таким образом, в кубе колонны создается 2 потока: 1 й поток — жидкость, стекающая с верха (из зоны питания+орошение) 2 й поток — пары, поднимающиеся с низа колонны.
Кубовая жидкость, стекая сверху вниз по тарелкам, обогащается высококипящим компонентом, а пары обогащаются легкокипящим компонентом.
(И. А. Александров Ректификационные и абсорбционные аппараты, Химия, Москва, 1971)
В случае, если разгоняемый продукт состоит из двух компонентов, конечными продуктами являются дистиллят, выходящий из верхней части колонны и кубовый остаток (менее летучий компонент в жидком виде, вытекающий из нижней части колонны).
Ситуация усложняется, если необходимо разделить смесь, состоящую из большого количества фракций.
В этом случае используются аппараты, подобные изображенному на картинке.
Ректификация и то, с чем её едят
Что же это за диковинный процесс?
Многие путают высокоукрепленную дистилляцию с ректификацией, но загвоздка ректификации в том, что на выходе Вы получаете чистый спирт (тут также есть несколько степеней крепости).
По высоте колонны приняты следующие нормы: для 1,5” колонн – 1-1,5 метра, для 2” – 1,5-2 метра, но при должной сноровке и другом доп. оборудовании можно компенсировать недостающую высоту.
Колонна должна быть укомплектована насадкой посерьезней, чем РПН. СПН, насадка Зульцера – правильный выбор для ректификации. Объяснение этому простое – РПН и прочие имеют высокую пропускную способность, что не позволяет должным способом удерживать спиртовые фракции в колонне.
Что касается характеристик насадки, важным пунктом является диаметр насадки, а точнее отношение диаметра трубы к диаметру насадки. Данный показатель должен быть равен 10. Допустим, труба 2” – 50мм, насадку следует использовать с диаметром 5мм, такую как СПН-Докторская 5х5.
К прочим характеристикам относится диаметр проволоки. Если рассмотреть СПН, то так же кол-во витков, угол φ, зазор между витками.
Настройка максимально эффективной работы с Вашей колонной:
Надо выявить эмпирическим путем максимальную мощность, которую способна утилизировать Ваша колонна. Очевидным должен быть тот факт, что для ректификации требуется постоянный, нескачущий нагрев. Лучше всего использовать нагрев ТЭНами. На это будут влиять такие факторы, как пропускная способность насадки, возможности узла отбора, мощность дефлегматора.
Установить максимальную мощность можно путем «лесенки»: кран отбора закрыт, выставляем 1кВт, ждем порядка 10-30 минут. Справляется? Поднимаем до 1.5кВт, опять ждем. Справляется? Поднимаем до 2кВт. Не справляется? Выставляем 1.75кВт. Естественно, нам надо будет подождать 10-30 минут для стабилизации колонны (давать колонне «работать на себя» час и больше не видим смысла).
Таким незатейливым способом мы узнаем максимальную мощность Вашей колонны.
Головы отбираем стандартно: 1-3 капли в секунд. Во время отбора голов температура в узле отбора будет немного подниматься.
Прекращать отбор голов можно основываясь на нескольких индикаторах:
Дело подходит к отбору тела. Надо выяснить какую интенсивность отбора можно выставлять без потери качества продукта. Предел возможного отбора кратен 1 литру в час. Если Ваша максимальная мощность 1.8кВт, то и отбор больше 1.8л/ч, к глубокому сожалению, невозможен (пока гуру данной индустрии не придумали как получать спирт из воздуха).
Отбор настраиваем также «лесенкой». Выставляем, допустим, 500мл/час. Наблюдаем как за спиртуозностью, так и за термощупом в колонне. Температура должна быть стабильной. Рост температуры будет свидетельством того, что интенсивность отбора избыточна (рост также возможен из-за изменения атмосферного давления, так что тут следует различать данные факторы).
Возможно такое, что настроив хороший интенсивный отбор в начале, на второй половине его придется снизить, так как содержание спирта в кубе падает и происходят иные процессы (изменение коэффициентов испарения спиртов).
Нескольких практик будет достаточно для понимания Вашей колонны и того, как с ней работать максимально эффективно.
Отбор следует прекращать тогда, когда его уже крайне трудно удержать при стабильной температуре. Лучше, после 93-94 в кубе продукт собирать в отдельные емкости, чтобы сравнивать жидкости и, если уже не устраивает результат, отставлять в сторонку и пускать на повторную ректификацию.
Отбирать до 99 в кубе или нет – выбирать Вам. Полученное можно пустить на повторную ректификацию, но после 97-98 в кубе процент питкого спирта крайне мал. Так что, все на Ваш выбор.
Отбор пропал или колонна не стабилизируется? Поздравляем, это захлеб колонны!
Что же НЕ надо делать?
Подавать избыточную мощность на колонну (за исключением тех случаев, когда требуется смочить насадку перед началом работы).
Переохлаждать флегму. Избыточная подача охл.воды на дефлегматор приводит к тому, что флегма возвращается в колонну переохлажденной. Это приводит к отключению от процесса части колонны или захлебу.
Температура на выходе из дефлегматора должна быть 40-63 градуса!
Выбирать маленькую насадку или слишком плотно ее засыпать. Плотная насадка приводит к уменьшению пропускной способности.
Большая Энциклопедия Нефти и Газа
Состав кубовой жидкости этой колонны следующий ( % объемн. [1]
Здесь т0, Хы характеризуют количество и состав кубовой жидкости в начале процесса. Уравнения ( VI, 70) в концентрационном треугольнике играют роль параметрических уравнений ректификационной линии. Последняя, как видно, оказывается прямой линией, что согласуется со сказанным ранее. [11]
В процессе периодической ректификации происходит непрерывное изменение состава кубовой жидкости но легколетучему компоненту от хг до xWli и, следовательно, изменение ее физических свойств и температуры кипения. При неизменных параметрах теплоносителя, подаваемого в испаритель ректификационной установки, переменным будет тепловой поток, а значит и производительность по испаряемой жидкости. Это существенно сказывается на устойчивости режимных параметров работы колонны, а в некоторых случаях может привести к выходу колонны из рабочего режима. Это осуществляют автоматическим изменением подачи теплоносителя в кипятильник в зависимости от мольной нагрузки колонны по пару. [12]
Эта зависимость может быть установлена путем расчета состава кубовой жидкости при разных флегмовых числах по заданным составу дистиллата и числу тарелок в колонне и последующего нахождения по уравнению ( 371) количества дистиллата, отвечающего расчетному составу кубовой жидкости. [13]
После отгонки некоторого количества последнего, точка состава кубовой жидкости вновь возвращается на разделяющую линию. [14]
Эта зависимость может быть установлена путем расчета состава кубовой жидкости при разных флегмо-вых числах по заданным составу дистиллата и числу тарелок в колонне и последующего нахождения по уравнению ( 262) количества дистиллата. [15]
Кубовая жидкость что это
Исследование работы ректификационной колонны
периодического действия
Ректификацией называется процесс разделения жидких однородных смесей на составляющие вещества или группы составляющих веществ в результате противоточного взаимодействия паровой и жидкой смесей.
Разделение жидкой смеси основано на различной летучести веществ. При ректификации исходная смесь делится на две части: дистиллят – смесь, обогащенную легколетучим компонентом (ЛЛК), и кубовый остаток – смесь, обогащенную труднолетучим компонентом (ТЛК). Легколетучим в процессе испарения является компонент с более низкой температурой кипения.
Процесс ректификации осуществляется в ректификационной установке непрерывно или периодически. В первом случае разделяемая смесь, предварительно подогретая до температуры кипения, подается в установку непрерывно. Подача ее осуществляется в среднюю часть так называемую питающую тарелку колонны, которая делит весь аппарат на нижнюю и верхнюю часть (рис. 1). Нижняя часть аппарата работает как отгонная – в ней происходит удаление легколетучего компонента из разделяемой смеси, а верхняя часть, как укрепляющая. В верхней части ректификационной колонны происходит обогащение паровой фазы легколетучим компонентом.
Установка в этом случае, обычно, работает в установившемся режиме, что позволяет получать продукт и кубовый остаток с постоянной по времени концентрацией легколетучего компонента.
При осуществлении периодического процесса (рис. 2.) разделяемая смесь предварительно заливается в испаритель – куб колонны, доводится до кипения и испаряется. Образовавшийся пар проходит через колонну, орошаемую подаваемой сверху флегмой, представляющую собой часть сконденсированного продукта. При взаимодействии флегмы и паровой фазы последняя обогащается легколетучим компонентом. Установка периодического действия работает в нестационарном режиме, то есть концентрация легколетучего компонента и в кубе во времени непрерывно уменьшается, при условии, что расход флегмы постоянен.
Сущность процесса ректификации состоит в частичном испарении исходной смеси с отводом и последующей конденсацией образовавшейся паровой фазы. Получившийся конденсат снова частично испаряется, конденсируется и т.д. За счет этого образуется продукт, обогащенный легколетучим компонентом (Л.Л.К.). Наглядно это можно иллюстрировать построением процесса на диаграмме температура – состав (рис. 3.).
Исходная смесь (точка D), обогащенная труднолетучим компонентом (Т.Л.К.) В, имеющим температуру кипения – tВ, нагревается до температуры кипения (линия Dа) и частично испаряется (линия ab), при этом образуется пар, обогащенный Л.Л.К. А. Получившийся пар конденсируется (линия bc) и образовавшийся конденсат снова частично испаряется (линия cd) и т.д. до тех пор, пока получится продукт – дистиллят заданного состава (точка С), обогащенный Л.Л.К. – А.
На практике ректификация проводится в колонных аппаратах барботажного (рис. 4) или насадочного (рис. 5) типа, принцип работы которых заключается в постоянном тепло- и массообмене между поднимающимся в колонне паром и стекающей жидкостью – флегмой.
Рассмотрим механизм взаимодействия флегмы и пара на колпачковой тарелке. Пар, образовавшийся в испарителе колонны, поступает на первую тарелку и проходит через паровые патрубки колпачков. Колпачки погружены на некоторый уровень в жидкую фазу. В результате этого паровая фаза проходит через прорези колпачков и барботирует в виде пузырьков в жидкой фазе, обеспечивая тем самым поверхность контакта между паровой и жидкой фазами и протекание на этой поверхности тепло- массообменных процессов. Поскольку пар имеет более высокую температуру чем жидкость, то при взаимодействии с жидкой фазой пар охлаждается и из него частично конденсируется легколетучий компонент, который присоединяется к жидкой фазе. Таким образом, она обогащается труднолетучим, а в паре повышается содержание легколетучего компонента.
Теплота конденсации паровой фазы передается флегме и нагревает ее до температуры кипения, флегма вскипает и из нее частично испаряется легколетучий компонент. В результате этого паровая фаза будет обогащена легколетучим компонентом, а жидкая фаза труднолетучим компонентом.
Аналогичные тепло- массообменные процессы протекают непрерывно на элементах поверхности насадочной колонны.
Таким образом, в результате процессов частичной конденсации паровой фазы и частичного испарения жидкой фазы, протекающих по всей высоте колонны, в верхней части аппарата накапливается пар практически чистого легколетучего компонента, а в кубе – жидкость, близкая по своему составу к чистому труднолетучему компоненту.
При расчете ректификационных колонн принимают, что разделяемая смесь следует правилу Трутона, согласно которому отношение мольной теплоты испарения к абсолютной температуре кипения для всех жидкостей является приближенно величиной постоянной. Отсюда следует, что молярные расходы обеих фаз для любого сечения колонны будут постоянны.
Вследствие этого весь расчет колонн удобнее производить в мольных количествах, а концентрации выражать в мольных долях.
Процесс периодической ректификации может проводиться при постоянном расходе флегмы, но при этом концентрации Л.Л.К. в различных сечениях колонны по мере отгонки его из куба будут убывать во времени, и соответственно, получают фракции дистиллята с уменьшающейся концентрацией Л.Л.К.
Проведение процесса с получением дистиллята постоянного состава возможно путем непрерывного увеличения расхода флегмы. Расчет процесса ректификации ведется, обычно, графоаналитическим методом, для чего на диаграмму составов наносится кривая равновесия и рабочая линия процесса (рис.6.)
Материальный баланс процесса периодической ректификации по материальным потокам может быть записан следующим образом:
где — флегмовое число, показывающее, сколько кг молей флегмы необходимо подать в колонну для получения 1 кг моля готового продукта. Отсюда
Материальный баланс процесса периодической ректификации по Л.Л.К. записывается аналогично уравнению (1) и может быть представлен в следующем виде:
Разделив правую и левую часть уравнения (4) на D с учетом , получим выражение:
где хD – концентрация Л.Л.К. в продукте (дистилляте). Выражения (5), представляющее собой зависимость рабочей (действительной) концентрации Л.Л.К. в паровой фазе (y) от его содержания в жидкой фазе (x), называется уравнением рабочей линии процесса. Она изображается отрезком прямой АВ (рис.6).
Равновесная линия, характеризующая состав пара, находящийся в равновесии с жидкой фазой, строится в координатах yp – x на основании экспериментальных данных [4] и позволяет определить значение равновесной концентрации Л.Л.К. в паровой фазе yp от текущего ее значения в жидкой фазе x:
Если разделяемая смесь подчиняется закону Рауля, то равновесная концентрация Л.Л.К. в паровой фазе (yp) может быть вычислена по уравнению:
где yF и yD – концентрации Л.Л.К.в исходной смеси и дистилляте, определяются по диаграмме y-x, мольн. доли; — число единиц переноса по паровой фазе, которое характеризует изменение рабочей концентрации, приходящееся на единицу движущей силы. Вследствие сложной зависимости yр=f(x) рассчитать аналитически число единиц переноса, как правило, невозможно. Поэтому прибегают к графическому интегрированию, для чего строится график в координатах
(рис.7)
При построении этого графика на диаграмме y(yp)-x наносятся равновесная и рабочая линии (рис. 7б). Последовательно задаются рядом значений y ( в интервале от yF до yD), для которых графическим путем определяется величина движущей силы процесса (yp— y) и рассчитываются значения . По полученным значениям y и соответствующим
строится график f(y) =
(рис. 7а), площадь под которым численно равна числу единиц переноса. При определении данной площади необходимо учитывать масштабы по обеим осям.
Число единиц переноса можно определить численным методом. Для этого весь интервал интегрирования (yF; yD) разбиваем на равные отрезки . В узлах интегрирования определяем значения подынтегральной функции
. Далее применяем одну из формул приближенного вычисления определенного интеграла, например, метод трапеций:
Высота слоя насадки в аппарате может быть рассчитана по следующей формуле
где hэкв – высота, эквивалентная единице переноса (ВЕП) по паровой фазе, является одной из характеристик работы массообменного аппарата.
практическое ознакомление со схемой и работой ректификационной установки периодического действия для разделения смеси этиловый спирт – вода. Составление материального баланса процесса. Построение процесса на диаграмме y(yр) – x. Определение коэффициентов массоотдачи и высоты, эквивалентной единице переноса.
Схема установки и принцип работы
Перепад давления на насадке измеряется при помощи дифференциального монометра, заполненного водой и присоединенного к кубу (2) через буферную емкость (на схеме не показаны). Для разделения паровой фазы на флегму и готовый продукт служит распределительная головка (5), снабженная воздушной рубашкой для уменьшения конденсации пара внутри ее. Внутри распределительной головки (5) расположены отверстия, отводящие пар для образования продукта и флегмы, которые попеременно перекрываются клапаном (11). Последний штоком соединяется с сердечником (12), находящимся внутри индукционной катушки (10), ток в которой включается автоматически на определенные отрезки времени через заданные интервалы. Регулируя их величину можно менять соотношение отбираемого продукта и подаваемой в колонну флегмы. При втянутом в катушку (10) сердечнике (12) клапан (11) занимает верхнее положение, перекрывая вход в дефлегматор и весь пар, вышедший из колонны направляется в конденсатор (7), где конденсируется, охлаждается и стекает в сборник готового продукта (8). При отключённом токе в катушке (10) клапан опускается, перекрывает вход в конденсатор (7) и весь пар поступает в дефлегматор (6), где конденсируется и стекает по стенкам распределительной головки в колонну в виде флегмы.
Порядок выполнения работы
Перед началом работы следует приготовить исходный раствор этилового спирта в дистиллированной воде заданной концентрации, которая контролируется при помощи рефрактометра или ареометра. Графики зависимости показателя преломления света и плотности от концентрации водных растворов этанола приводятся на щите установки. Приготовленный раствор заливается в куб колонны и включается электронагреватель испарителя. Включение аппаратуры в работу и установка заданного режима разрешается только допущенным к этому лицам.
После того, как раствор в испарителе закипит, и колонна прогреется, включается клапанное устройство и начинается отбор продукта. Колонна вошла в рабочий режим.
При проведении работы отмечается объем дистиллята, образовавшегося за определенный отрезок времени, и замеряется его концентрация по рефрактометру или при помощи ареометра. Следует помнить, что зависимость плотности спиртового раствора от концентрации на графике дается для температуры 20°С, поэтому пробу перед замером плотности необходимо охладить до соответствующей температуры. Полученные данные сводятся в таблицу 1 и по ним производится расчет процесса.