Вместо аккумулятора на авто
Суперконденсаторы вместо аккумулятора в автомобиле
Понадобится
Этого хватит для первого опытного образца.
Первое испытание с запуском двигателя
Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.
Схема
Вот схема второго прототипа батареи.
Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.
На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.
Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.
Полностью рабочий экземпляр батареи на суперконденсаторах
Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.
Конденсатор вместо аккумулятора в авто: можно ли заменить?
Производители вполне серьезно рассматривают замену аккумулятора суперконденсатором или двойным электрохимическим ионистером. Вопрос прорабатывается инженерами и даже когда-то применялся в практических целях. Сейчас использование такого устройства ограничено в областях применения техническим прогрессом. Так можно ли заменить АКБ автомобиля конденсатором? При каких условиях? На это и многое другое дадим ответы в нашей статье.
Плюсы и минусы конденсатора по сравнению с аккумулятором
АКБ и конденсатор — это устройства, которые накапливают электричество от генератора тока, отдают при необходимости, например, для запуска автомобиля. Каковы же достоинства, недостатки конденсатора по сравнению с аккумулятором?
Недостатки в сравнении с АКБ:
Почему конденсатор редко используют вместо аккумулятора
Есть одно серьезное препятствие на пути использования этого средства запуска. Конденсаторы «не держат заряд».
У аккумулятора и конденсатора изначально разные цели использования. АКБ должен как можно более длительное время не разряжаться, выдавая энергию по частям. Если по какой-то причине генератор выйдет из строя, то аккумулятор позволит проехать машине около получаса. То есть она гарантированно доберется до дома или СТО. С ионистерами этот фокус не пройдет.
Разряд конденсатора будет постоянным из-за утечек, работы элементов бортовой сети даже при ожидании.
Величина напряжения у аккумулятора практически неизменна при полностью заряженном и полуразряженном состоянии. Кондер меняет напряжение от силы заряда. Иногда в очень широких пределах, что вредно для бортовой электроники.
Как заменить
Заменить АКБ как стартовое устройство, реально. Берем суперконденсаторы БУ Maxwell 1200F. Сборка из 6 штук по 200 фарад каждый, 2,7 вольт на один конденсатор.
Общий вольтаж системы — 16,2 вольт.
За сутки напряжение на заряженном устройстве снижается с 14,7 вольт до 12,3 вольт. Потом разряжается все медленнее и через 6 месяцев остается 9 вольт.
При установке на Хонду Фит одного такого устройства без аккумулятора, заряженного до 14,5 вольт, конденсатора хватает на 3 ч. После этого напряжение падает до 11,5 единиц. Если установить автозапуск по падению напряжения, автомобиль автоматически запустится и генератор зарядит конденсатор.
Гибридная связка менее мощного аккумулятора с конденсаторной сборкой будет крутить стартер бодрее при низких температурах.
Ионисторы вместо стартерного свинцово-кислотного аккумулятора
Идея запуска ДВС от ионисторов (на западе их называют суперконденсаторы) не нова, в сети есть несколько публикаций и видео роликов. В тех, которые я смотрел, либо ничего не вышло, либо получилось слишком дорого. Получилось заводить двигатель только на ионисторах емкостью 3 тысячи фарад. На 500 и 700 фарадах двигатель ни у кого не завелся.
Теория
Набравшись опыта коллег по цеху, решил сначала провести эксперименты на виртуальной модели гибридного аккумулятора. Для этого взял замечательную программу Yenka. Нашел в сети, то что у вазовского стартера рабочий ток примерно 150-200 ампер. Ионисторов в Yenka не нашел. Использовал обычные конденсаторы только с большой емкостью. В результате виртуальных экспериментов ионисторы в 500 фарад крутили стартер аж 3.5 секунды, пока напряжение не упало ниже 8 В.
Падение напряжения при виртуальном «прокручивании» стартера от сборки из 6 ионисторов по 500Ф
Эксперимент в программе показывает, что можно завестись от сборки из шести 500 фарадников. Но на практике у коллег не получилось. Возможные причины:
я напутал в схеме в программе;
на самом деле ток стартера выше;
на практике были поддельные ионисторы.
Изначально, мне сильно не понравились клеммы на 500 фарадных ионисторах, они меньше чем на UPS-ных аккумуляторах. А если посмотреть на клеммы авто аккумуляторов и толщину провода к стартеру, то можно предположить, что из-за малого сечения клемм ионисторов было сильное падение напряжения на них и тока не достаточно чтобы провернуть стартер.
У конденсаторов, в отличии от аккумуляторов, под нагрузкой нет стабильного напряжения. То есть, если подключаем стартер к заряженной до 14 вольт батареи ионисторов, то через 2 секунды работы напряжение упадет до 11 вольт, еще через 2 секунды до 7 вольт. Чтобы напряжение снова поднялось, нужно заряжать конденсаторы. Поэтому время работы стартера сильно зависит от начального напряжения. Так как максимальное напряжение одного ионистора 2.7 вольт, а генератор в машине может выдавать до 14.5 вольт в сборе нужны минимум 6 ионисторов, тогда максимальное напряжение составит 16.2 вольт. Было бы разумно использовать весь потенциал ионисторов и заряжать их до 16 вольт. Не нашел достоверной информации о том не сгорит ли стартер от 16 вольт. Но в характеристиках других электроприборов в машине русским по белому сказано: «до 15 вольт». Решил рискнуть стартером и собрать гибридный аккумулятор, где будет 6 банок ионисторов на 16.2 В, подключенные только к стартеру, балансировочная плата, обычный аккумулятор на 12 вольт для питания всего остального и заряжаемый от генератора. И повышающий преобразователь чтобы повысить напряжение от 12 до 16 вольт.
Закупка
Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.
Аккумулятор взял обычный от UPS на 7 Ач.
Сборка
В качестве корпуса будет коробка от старого свинцового аккумулятора. Крышку срезал так, чтобы клеммы остались на месте. Иначе клеммы будут на крышке и соединять их нужно будет соплями гибкими проводами. А я хочу все силовые соединения сделать жесткие, резьбовые. Полностью перегородки вырезать не стал, ширина одной “банки” как раз подошла под диаметр одного ионистора, оставил куски перегородок как изоляторы и для крепления преобразователя.
Между собой соединил алюминиевой полосой сечением 30х1 мм, сделанной из обрезка тавра, купленного в магазине крепежа.
зажим плашечный ПА-2-2 ВК
Внутри аккумуляторные клеммы проводились к пластинам свинцовым стержнем 12 мм. Для соединения с ним взял “зажим плашечный ПА-2-2 ВК” и отпилил от него кусок, нужного размера. К болту зажима прикрутил алюминиевую полосу, идущую к ионистору. Балансировочную плату соединил с перемычками тонкими проводами с клеммами на винты. Точно так же как и преобразователь и аккумулятор.
Общий “плюс” на 12В вывел через стенку корпуса болтом 6 мм. Точно так же вывел минус включения преобразователя.
Эксперименты
Сейчас, зимой, сдох аккумулятор от UPS, либо он просто не предназначен для работы на морозе, либо мне его изначально дали еле живой. Его не хватает даже на втягивающее стартера, но ионисторы заряжает. Заказал 4 LiFePO4 аккумуляторы и балансир.
Суперконденсатор — альтернатива аккумуляторам?
Отличия ионисторов от аккумуляторов
Суперконденсаторы иногда называют промежуточным звеном между конденсаторами и аккумуляторами. На самом деле это не совсем верно. Ионистор по своей сути – это все же конденсатор.
Принцип работы любого аккумулятора основан на обратимых электрохимических реакциях. При зарядке они идут в одну сторону, при разрядке – в обратную. Так, в свинцово-кислотной автомобильной батарее под действием зарядного напряжения сульфат свинца и вода реагируют с образованием свинца, оксида свинца и серной кислоты. Под действием разрядного тока происходит обратная реакция. Количество циклов заряд-разряд ограничивается образованием сульфата свинца, постепенно покрывающего пластины, и коррозией металлических элементов.
Иное дело конденсатор. В общем случае в нем электрохимических реакций не происходит. Прибор состоит из двух пластин (обкладок), разделенных слоем диэлектрика, причем форма обкладок может быть различной. Для компактности конденсаторы часто изготавливают в виде двух полосок фольги, разделенных диэлектриком и свернутых в плоский или круглый рулон.
Оксидные конденсаторы имеют подобную конструкцию, но их принцип устройства другой. Одной обкладкой служит полоска фольги, другой – электролит. Диэлектриком является тонкий слой оксида. Вторая полоса фольги является токосъемником.
Заряд накапливается на пластинах под действием приложенного электрического поля. При этом не происходит химических реакций, не происходит расхода и преобразования реагентов, пластины и диэлектрик не деградируют во время накопления и отдачи энергии.
Емкость конденсатора зависит от трех составляющих:
Отсюда пути для увеличения емкости:
Совершенствование диэлектрических свойств изолятора – путь не очень перспективный, прорывов здесь ожидать сложно. Создатели ионисторов достигли цели с помощью первых двух способов.
Расстояние между обкладками удалось радикально сократить путем применения двойного электрического слоя. В нем обкладками служат ионы – носители противоположного заряда, группирующиеся на границе раздела металл-электролит. Расстояние между ними крайне мало по сравнению с обычными конденсаторами и даже с оксидными. Вообще, принципы построения ионистора схожи с принципами оксидного конденсатора. Суперконденсатор получил от оксидников некоторые «наследственные болезни», например, небольшое (даже меньшее – в пределах 2..10 вольт) рабочее напряжение. Более высокий уровень тонкий слой межобкладочного «диэлектрика» не выдерживает.
Принципиально большую площадь обкладок удалось получить применением пористого материала. Обычно применяется активированный уголь или вспененный металл. В итоге емкость ионисторов может достигать несколько сотен фарад. Это очень большая величина – для сравнения, земной шар имеет электрическую емкость около 1 Ф. Причем заряжать такой суперкоденсатор можно большими токами. В результате процесс может занять секунды или минуты.
Изначально ионистор полярности не имеет. Но при выходе с завода у него есть обозначение плюсового и минусового выводов – результат остаточного заряда. Эту полярность приходится соблюдать во время эксплуатации.
На практике анод и катод разделяют сепаратором. Это позволяет выполнить ионистор в виде рулона или в виде многослойной конструкции и избежать короткого замыкания между электродами. В процессах запасания и отдачи энергии сепаратор не участвует.
Существует другой тип ионисторов – псевдоконденсаторы. Они по своему принципу работы ближе к аккумуляторам, потому что для накопления заряда также используют обратимые электрохимические процессы. Основное отличие электрохимических конденсаторов от АКБ в том, что реакции идут только на поверхностном слое, за счет этого скорость пополнения запаса энергии ближе к конденсаторам. От аккумуляторов же унаследована склонность к электрохимической деградации элементов конструкции. Это приводит к сокращению периода эксплуатации. Такой суперконденсатор выдерживает порядка десятков тысяч циклов заряд-разряд, в отличие от сотен тысяч для обычных ионисторов (они в теории имеют бесконечное время жизни). Зато у псевдоконденсаторов большая удельная емкость и они считаются более перспективными в плане развития технологии.
Видео-эксперимент с питанием шуруповерта от конденсаторов.
Где применяются суперконденсаторы
Область применения ионисторов определяется совокупностью их плюсов и минусов. К достоинствам суперконденсаторов помимо упомянутого большого ресурса относят:
Существуют и недостатки:
Второй недостаток обходится сборкой элементов в батареи для получения нужного напряжения. Впрочем, то же самое относится и к аккумуляторам.
Еще одна особенность суперконденсаторов, которая в некоторых случаях является недостатком – значительное снижение напряжения при разряде. В нем не идут электрохимические реакции, поддерживающие напряжение примерно на одном уровне в начале разрядки, поэтому выходной уровень начнет падать сразу после подключения нагрузки.
Все это позволяет использовать суперконденсаторы в качестве резервных источников питания. Очень удобно их применять вместо АКБ в автономных устройствах, устанавливаемых удаленно. Длительный период работы и отсутствие необходимости сервисных операций удешевляют эксплуатацию и повышают надежность таких объектов. К таким устройствам относятся элементы телемеханики, удаленные измерительные приборы. Также удобно применять ионисторы в качестве буферных элементов на объектах ветроэнергетики, преобразователей солнечной энергии в электрическую и т.п.
В видео тестируют ионисторы на 500 фарад.
Есть ли смысл менять ионистор вместо автомобильного аккумулятора
Многих автолюбителей не покидает мысль использовать суперконденсатор вместо аккумулятора для автомобиля. Существуют формулы для пересчета емкости из фарад в привычные ампер*часы (1 Ф при напряжении 1 В равен 1/3600 А*ч).
В результате экспериментов имеются данные, что пуск автомобиля от батареи из 6 суперконденсаторов по 500 Ф, заряженных до 12 вольт, происходит успешно как в теплое, так и в холодное время года (общая емкость батареи конденсаторов при последовательном соединении составляет менее 100 Ф).
А дальше не все так радужно. Напряжение при этом быстро падает до 9..10 вольт. Для накопителя это не страшно, и этого даже хватает еще на одну прокрутку стартера. Но вот светосигнальное оборудование и другие электронные устройства на такое низкое напряжение не рассчитаны. Аварийную сигнализацию и ближний свет без запуска двигателя включить не получается. К тому же саморазряд сажает батарею до непригодного для запуска состояния уже через сутки. Хотя многие производители ионисторов декларируют суточный саморазряд в районе 10%, по факту он намного больше. Возможно, это зависит от добросовестности заявителя или от качества изготовления суперконденсатора.
Напрашивается очевидный вывод. Несмотря на прогнозы специалистов, на сегодняшний день ионистор полноценно заменить аккумуляторную батарею не может. В качестве возимого резервного источника питания суперконденсаторы также непригодны из-за быстрого саморазряда. Вполне возможно применение в гараже в качестве быстрозаряжаемого пускового источника энергии при отсутствии пускозарядного устройства и времени для ожидания зарядки истощенной штатной АКБ. Для полной замены аккумуляторов суперконденсаторами надо подождать развития технологий.
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Ионисторы на замену аккумуляторным батареям
При проектировании электронной схемы с внутренним источником питания стоит задуматься о том, будет ли это классический аккумулятор или современный ионистор (другое название – суперконденсатор).
Движущей силой развития современной электроники являются источники энергии, без которых было бы невозможно эффективно миниатюризировать мобильные устройства, компьютеры или всевозможные носимые гаджеты. На первом этапе этой революции классические одноразовые батареи были заменены гораздо более удобными и экономичными АКБ. Но сейчас можно отметить другую тенденцию – суперконденсаторы – восходящая звезда в мире источников питания. Хотя вряд ли эти элементы вытеснят с рынка обычные электрохимические батареи в ближайшие несколько лет, их доля в отрасли с каждым годом будет значительнее.
Аккумуляторы – краткий обзор технологии
Сейчас на рынке электронных компонентов можно найти широкий ассортимент аккумуляторов, различающихся как технологией изготовления, так и размерами, способом монтажа, емкостью, напряжением, выходом по току или сопротивлению, условиям рабочей среды. Часто выбор источника питания для конкретного применения определяется не только основными техническими параметрами, но и соответствующими сертификатами безопасности, которые определяют использование батареи в данном устройстве – медицинские устройства будут здесь прекрасным примером. Далее сводка наиболее важной информации о типах аккумуляторов, которые в настоящее время используются в различных областях электроники.
Аккумуляторы NiCd (никель-кадмиевые) – одно из старых поколений аккумуляторов, обычно встречающиеся в виде ячеек R6 (AA) или R03 (AAA). В настоящее время использование этих батарей прекращается из-за токсичности кадмия и проблем с утилизацией.
NiMH аккумуляторы (никель-металлогидридные) – более эффективны, чем NiCd, и по-прежнему пользуются особой популярностью в сегменте небольших аккумуляторов типоразмеров (R03, R6, R14, R20, а также 6F22). В связи с популяризацией никель-металлгидридных элементов и корпусов и падением цен это решение, оно заменило никель-кадмиевые батареи. Хорошим примером выступают эффективные АКБ Eneloop, часто используемые в профессиональных устройствах (например при питании фотовспышек, требующих высокой емкости и эффективности по току, а также устойчивости к большим колебаниям окружающей температуры). NiMH аккумуляторы также доступны в миниатюрных версиях, а также различных типов корпусов (часто предназначенные для монтажа непосредственно на печатной плате). Во многих коммерческих устройствах можно найти использование небольших перезаряжаемых батарей этого типа в качестве источника питания для поддержания энергозависимой памяти и / или работы часов реального времени (RTC). Это решение имеет преимущество перед использованием литиевыъх батарей (например CR2032), поскольку оно устраняет необходимость периодической замены батареи каждые несколько лет работы устройства.
Аккумуляторы Li-Ion (литий-ионные) – наиболее распространенный сегодня тип аккумуляторов, особенно в мобильных устройствах, ноутбуках, радиоуправляемых моделях, квадрокоптерах, медицинских устройствах, фонариках и многом другом. Батареи этого типа отличаются большой емкостью, высоким выходом по току и высокой плотностью энергии, а также позволяют достаточно быстро перезаряжаться. В отличие от щелочных батарей, литий-ионные источники электроэнергии требуют строго контролируемых рабочих параметров, в частности процесса зарядки – хорошо известны самовоспламенение и взрывы литий-ионных аккумуляторов в результате производственных дефектов или неисправности зарядных устройств.
Аккумуляторы Li-Po (литий-полимерные) – также часто используемые в бытовой электронике (например, в планшетах или фитнес браслетах) и в авиамоделировании. Они более безопасные (хотя и требуют использования как встроенных, так и внешних устройств защиты) и легче, чем литий-ионные батареи, обеспечивают возможность очень быстрой зарядки и бывают разных размеров.
Аккумуляторы LiFePO4 (литий-железо-фосфатные) – еще одна подгруппа аккумуляторов с химической структурой на основе лития, набирающая все большую популярность в требовательных схемах электропитания электромобилей, электроинструментов и накопителей энергии. LiFePO4 обладает довольно высокой плотностью энергии (следовательно емкостью), высокой устойчивостью к суровым условиям эксплуатации (включая глубокий разряд) и длительным сроком службы. При этом у них нет эффекта памяти.
Необслуживаемые батареи – в эту группу входят свинцово-кислотные батареи нового поколения, в которых жидкий электролит (ранее требовавший периодического, ручного пополнения и контроля уровня) был заменен электролитом в виде геля (гелевые батареи) или закрываются в специальных отсеках из стекломата (аккумуляторы AGM). Продукты из этой группы обладают высокой емкостью, но при этом удельная энергия довольно низкая. Даже самые маленькие необслуживаемые батареи во много раз тяжелее, чем литий-ионные или никель-металлгидридные АКБ, аналогичные по емкости и напряжению. Преимуществом AGM и гелевых аккумуляторов является их невысокая цена, возможность работы в любом положении (без риска утечки электролита за пределы аккумуляторного отсека) и простота взаимодействия со схемами бесперебойного питания.
Конструкция и использование ионисторов
Суперконденсаторы по устройству и принципу работы отличаются от классических электролитических конденсаторов, хотя кажутся на них похожими. Основное отличие состоит в том, что суперконденсаторы имеют более сложную форму – их название, электрический двухслойный конденсатор (EDLC), указывает на двухслойную структуру. Облицовка конденсатора отделена от электролита «собственными» диэлектрическими слоями, что делает заменяющую модель такого конденсатора включающей в себя два последовательно соединенных конденсатора. Между облицовками имеется дополнительный слой ионопроницаемого сепаратора, предназначенный для предотвращения случайного замыкания электродов.
Схема суперконденсатора EDLC
Конструктивно похожие на EDLC конденсаторы представляют собой так называемые гибридные конденсаторы, в которых накопление электрического заряда происходит с помощью двух механизмов. Первый из них – типичный для конденсаторов, то есть за счет накопления электростатической энергии. Второй механизм основан на электрохимических явлениях, которые заставляют суперконденсатор вести себя как обычная батарея. Такой гибридный принцип работы делает характеристики заряда и разряда немного более сложными, чем у классических конденсаторов, но поведение суперконденсаторов в реальных схемах будет определяться в основном электростатической составляющей. Это означает почти линейное падение напряжения в зависимости от степени заряда, что является большой трудностью для разработчиков.
Ионисторы и АКБ – сравнение параметров
Принимая решение о выборе суперконденсатора или аккумулятора для проектируемого устройства, надо учитывать ряд ключевых технических параметров.
Скорость зарядки – несомненным преимуществом суперконденсаторов является очень короткое время зарядки, зависящее от емкости и установленного ограничения тока – в случае меньшей емкости обычно не возникает проблем с получением времени зарядки от долей секунды до несколько секунд. Такие диапазоны недостижимы для любых батарей, имеющихся на рынке, в случае которых даже частичная подзарядка требует как минимум нескольких минут.
Плотность энергии – этот параметр, выражаемый в единицах энергии на килограмм массы данного источника (обычно [Втч / кг]) для суперконденсаторов во много раз ниже, чем для любого типа аккумулятора. То есть для накопления того же количества энергии, что и в батарее (например, в литий-ионной), потребуется использование гораздо большего по размерам и более тяжелого суперконденсатора.
Плотность мощности – параметр, выражаемый в единицах мощности на килограмм массы источника [Вт / кг], намного выше для суперконденсаторов, чем для обычных электрохимических батарей. Высокое значение плотности мощности означает, что даже небольшой суперконденсатор способен подавать относительно высокий ток на потребитель – это связано с очень низким сопротивлением ESR. Сравнение различных типов источников тока в плане энергии и удельной мощности показано на рисунке.
Сравнение различных типов источников энергии на плоскости энергии и плотности мощности
Срок службы – суперконденсаторы имеют гораздо более длительный срок службы, чем обычные электролитические конденсаторы – и хотя они также подвергаются неизбежным процессам старения, количество циклов заряда в течение гарантированного срока службы практически неограничено (особенно в небольших моделях EDLC, предназначенных для монтажа на печатной плате). Эти особенности делают суперконденсаторы идеальным выбором там, где частая перезарядка происходит во время нормального рабочего цикла.
Номинальное напряжение – самым большим недостатком суперконденсаторов является низкое рабочее напряжение – в большинстве случаев оно не превышает значения 2,8 – 5,5 В. Это ограничение связано с внутренней структурой – материала и электролита. Если в случае аккумуляторов последовательное соединение отдельных ячеек в блоки является классическим методом увеличения выходного напряжения, то в суперконденсаторах это связано с резким уменьшением эквивалентной емкости, более того – часто требует использования выравнивания напряжений, чтобы предотвратить повреждение одного из них из-за слишком большой разницы в емкостях (что неизбежно при довольно большом производственном допуске).
Цена – современные суперконденсаторы по-прежнему относительно дороги в производстве, а это означает что использование перезаряжаемых или одноразовых батарей может оказаться экономической необходимостью. Стоимость резко возрастает, особенно на миниатюрные конденсаторы для сборки SMD с очень большой емкостью.
Типичная разрядная характеристика суперконденсатора
Характеристики разряда – одним из наиболее важных различий между батареями и конденсаторами является форма их характеристик разряда по напряжению. В случае батарей напряжение медленно падает в течение длительного периода времени до тех пор, пока не будет достигнут определенный критический диапазон, выше которого происходит резкое падение, ведущее к глубокой разрядке – если устройство не отключится раньше. Примеры характерных форм для популярных типов батарей показаны на рисунке. Для суперконденсаторов характеристика разряда изначально нелинейная, потому что падение напряжения на сопротивлении ESR, которое изменяется со временем, накладывается на постепенное изменение напряжения, что вызвано уменьшением количества электрического заряда, накопленного в конденсаторе.
Примеры форм разрядных характеристик для популярных типов аккумуляторов
Суперконденсаторы вместо батареек
Принято считать, что ионисторы являются быстрой и эффективной заменой батарей и аккумуляторов практически в любом устройстве. Но стоит помнить, что из-за всех отличий, а также значительных ограничений этой технологии – прямая замена одного типа источника энергии на другой возможна только при определенных условиях и в строго определенных ситуациях. Ионисторы это не малогабаритные электронные устройства, а целые схемы большой мощности. Хотя в последнее время все чаще слышно о питании даже электромобилей с помощью суперконденсаторов.
Действительно, такое решение кажется очень привлекательным с точки зрения полезности – высокая удельная мощность может успешно использоваться во время разгона, значительно улучшая динамику движения. Замечательная скорость зарядки дарит надежду на то, что электромобиль будущего сможет заряжаться немного дольше, чем просто заправка обычного авто.
Другой пример – накопители энергии, используемые в современных распределенных системах электроэнергии. Подключение потребителей к электросети (которые помимо использования энергии могут и продавать излишки обратно в сеть), а также увеличение количества возобновляемых источников энергии означает, что иногда возникает необходимость хранить неиспользованную энергию низкой нагрузки на сеть. Это решение позволяет использовать его в периоды повышенного спроса, связанного с суточным циклом (например при работе предприятий). С другой стороны, использование накопителей энергии имеет решающее значение из-за включения в сеть энергоемких зарядных станций для электромобилей – обычная электросеть не сможет справиться с импульсным увеличением тока.
Схемы питания на основе суперконденсаторов
В некоторых схемах ценным преимуществом является возможность поддерживать питание процессора и ключевых компонентов, например, после сбоя электросети, чтобы должным образом завершить работу операционной системы, сохранить наиболее важные данные в памяти или восстановить информацию из энергозависимой памяти после того, как питание вернется в норму.
Не всегда необходимо и выгодно запитывать все устройство – обычно достаточно подать напряжение на процессор на короткий период времени вместе с любыми внешними запоминающими устройствами, необходимыми для завершения процедуры управляемого выключения. Из инженерной практики известно, что данные операционной системы хранятся на картах microSD миникомпьютеров (например Raspberry Pi), и повреждаются при внезапном отключении питания в неудачный момент.
В некоторых случаях можно эффективно использовать энергию запасенную в классических электролитических конденсаторах, фильтрующих источник питания. Но если для выполнения процедуры требуется большее количество энергии – стоит обратиться к суперконденсатору, работающему в режиме буферного питания.
Принцип работы системы резервного питания с использованием суперконденсаторов
Принцип работы системы резервного питания с использованием суперконденсаторов показан на рисунке выше. После отключения основного блока питания, последовательно включенные суперконденсаторы отправляют энергию на потребитель через преобразователь. Дополнительные резисторы – за счет снижения эффективности схемы из-за потерь энергии – уравновешивают напряжение, предотвращая поломку одного из конденсаторов.
Такая простая схема, хотя и хорошо известная из инженерной практики по применению свинцово-кислотных аккумуляторов, не будет работать в большинстве реальных проектных ситуаций – основная проблема будет заключаться в сильном импульсе тока, который появляется при зарядке суперконденсатора сразу после включение питания устройства. Поэтому должны быть предусмотрены соответствующие меры по исправлению положения.
Схема для устранения проблемы сильного импульса тока, возникающего при зарядке суперконденсатора
Одно из самых простых практических приложений для устранения этой проблемы показано на рисунке. Резистор R используется для ограничения зарядного тока.
Диод Шоттки защищает схему от обратных токов, благодаря чему зарядка конденсатора возможна только через резистор. Схема адаптирована для питания от источников постоянного напряжения с напряжением, превышающим как минимум на 0,3 В напряжение поддержки, необходимое для правильной работы процессора. Важным требованием является обеспечение высокого сопротивления источника после его выключения, иначе суперконденсатор будет разряжаться непосредственно на источник, что значительно сократит время поддержки.
Универсальное применение схемы резервного питания с использованием суперконденсаторов
Гораздо лучшим и более универсальным решением является схема питания, показанная на рисунке выше. Дополнительный диод Шоттки, подключенный последовательно с резистором R, предотвращает разряд ионистора от основного источника питания или других блоков устройства. Полевой транзистор позволяет программно выбрать источник напряжения – в состоянии проводимости он обеспечивает путь с низким сопротивлением, который соединяет выводы питания процессора с основным источником питания устройства, и отключение (после обнаружения падения напряжения) позволяет начать разрядку суперконденсатора после перевода микроконтроллера в режим пониженного энергопотребления (STOP).
Стоит обратить внимание на то, что большой ошибкой может быть попытка использовать суперконденсатор вместо никель-металлгидридной аккумуляторной батареи для поддержания часов RTC и памяти RAM. Это решение будет работать только в тех устройствах, которые во время нормальной работы постоянно или большую часть времени подключены к другому источнику питания (например часы с питанием от сети). Следует помнить, что суперконденсаторы характеризуются относительно высокими токами саморазряда, а значит время поддержки ионистором RTC или RAM памяти будет во много раз меньше, чем в случае даже небольшой литиевой батареи или никель-металлогидридного АКБ.
Резервный БП с напряжением выше 5 В
Схемы буферного питания, представленные на рисунках, оправданы для маломощных микроконтроллеров и других схем, способных работать при напряжении питания около 1,8 – 3,3 В. При необходимости получить более высокое напряжения (например USB 5 В), можно выбрать один из четырех вариантов:
Выбор преобразователя для ионистора
Давайте подумаем о соответствующем выборе DC / DC преобразователя, который будет работать с суперконденсаторами. Среди всех важных параметров, особое внимание следует уделить трем из них:
Принципиальная схема MCP1640, способной работать при входном напряжении в диапазоне от 0,65 В
Диапазон входного напряжения – предполагая, что целью использования преобразователя является восстановление как можно большего количества энергии хранящейся в суперконденсаторе (а не только для повышения напряжения на короткое время, например, для сохранения данных в энергонезависимой памяти), важен подбор схемы с максимально широким диапазоном напряжений с минимально возможным пусковым напряжением.
На рынке существует множество миниатюрных преобразователей, отвечающих этому требованию – в качестве примера приведем семейство Microchip MCP1640, способные работать при стартовом входном напряжении в диапазоне от 0,65 В. Базовая схема показана на рисунке. Еще одним заслуживающим внимания примером является схема LM2621 – при токе питания 80 мкА она может обеспечивать питание выходного устройства с током до 1 А, что позволяет использовать её в устройствах, требующих большей мощности (в этом случае понадобится суперконденсатор большой емкости или батарея нескольких меньших, соединенных параллельно).
КПД – высокий коэффициент преобразователя позволяет максимально полно использовать относительно небольшое количество энергии, хранящейся в суперконденсаторе. Но стоит иметь в виду, что во многих приложениях – в частности, в сегменте сверхнизкого энергопотребления – значение тока источника питания, потребляемого самим преобразователем, оказывается гораздо более важным, поскольку именно этот параметр становится основной потерь энергии, вносимых преобразователем для схемы с низким энергопотреблением. Например MCP1640 для правильной работы требуется ток всего 19 мкА, поэтому ее можно успешно использовать в маломощных устройствах.
Контроль (линия EN / SHDN) – стоит обратить внимание на возможность отключения инвертора при нормальной работе устройства, что снизит общее энергопотребление и позволит быстрее заряжать суперконденсатор после того как накопленный в нем заряд использован. В настоящее время подавляющее большинство интегрированных контроллеров DC / DC имеют линию включения. Энергосбережение особенно полезно в устройствах, основным источником питания которых являются батареи или аккумулятор – например, контроллер MCP1640 потребляет всего 1 мкА в выключенном состоянии.
Встроенные контроллеры ионисторов
Использование стандартного встроенного контроллера заряда / разряда – хороший выбор для более требовательных приложений с суперконденсаторами. В настоящее время на рынке появляется все больше продуктов этого типа – каждый из них предлагает несколько иной набор функций и параметров, что позволяет адаптировать силовые цепи к конкретным требованиям приложения.
Схема применения контроллера MAX38888, действующего как «реверсивный» преобразователь постоянного тока
Рассмотрим микросхему MAX38888. Это обратимый преобразователь постоянного тока в постоянный, позволяющий просто реализовать функции управления потоком энергии между суперконденсатором и основным источником питания (батареями или аккумулятором). Схема позволяет заряжать суперконденсатор током до 500 мА, а после потери основного источника питания (после извлечения аккумулятора) позволяет запитывать системную часть (шину питания основного устройства) током до 2,5 А. Схема включения контроллера MAX38888 показана на рисунке.
Схема применения микросхемы LTC4041 с двумя суперконденсаторами
Другой пример специализированного контроллера суперконденсатора – микросхема LTC4041. Встроенный активный балансировщик обеспечивает прямое подключение двух последовательных суперконденсаторов к контроллеру. Один и тот же блок понижающего / повышающего преобразователя постоянного тока может работать в двух направлениях, поддерживая как зарядку суперконденсатора, так и разряд на нагрузку.
В схемах требующих более высоких рабочих напряжений, можно использовать расширенный контроллер серии LTC3350. Система обеспечивает последовательное соединение до четырех суперконденсаторов, предлагает функцию активного балансира, двунаправленный понижающий / повышающий преобразователь и ряд уникальных функций, в том числе 14-битный преобразователь АЦП для контроля напряжений, токов, емкости и так далее. Он также оснащен активными ограничителями перенапряжения и двойным транзисторным контроллером с «идеальным диодом» для передачи энергии на суперконденсаторы и обратно без потерь.
Схема применения расширенного контроллера серии LTC3350, разработанного для систем, требующих высоких рабочих напряжений
ON Semiconductor подготовила интересное предложение для разработчиков, работающих над фотовспышками и другими приборами, требующими подачи сильных импульсов тока (до 4 А) на мощные светодиоды. CAT3224 – это специализированный контроллер ионистора, который также предлагает два высокопроизводительных встроенных источника тока и активный балансировщик для подключения двух суперконденсаторов.
Схема на базе микросхемы CAT3224, которая позволяет подавать сильные импульсы тока на мощные светодиоды
Представленное решение является еще одним примером отличного взаимодействия между батареями (в данном случае рекомендуются литий-ионные) и суперконденсаторами.
Взаимодействие суперконденсаторов с АКБ
Обсуждая тему суперконденсаторов и аккумуляторов, заметим еще один важный пример сотрудничества между обоими типами источников энергии. С помощью компаратора, ОУ и LDO стабилизатора, можно построить схему активного напряжения компенсации падения на внутреннее сопротивление основного источника питания (батареи) – пример такой схемы показан на рисунке далее.
Активная компенсация падения напряжения на внутреннем сопротивлении основного источника питания
Конденсаторы заряжаются от источника тока на базе усилителя MAX406, взаимодействующего с шунтирующим резистором R6 (в дифференциальном режиме) и выходным транзистором P1. Компаратор MAX985 постоянно проверяет напряжение на конденсаторах и шине питания устройства, при необходимости открывая транзистор P2, так что суперконденсаторы подключаются параллельно к батарее, поддерживая ее работу и предотвращая переходное падение напряжения при приложении большой нагрузки.
Канал 1 – напряжение аккумулятора, канал 2 – выходное напряжение, канал 3 – напряжение на плюсовом выводе «верхнего» суперконденсатора
Эффекты работы системы показаны на рисунке (канал 1 – напряжение аккумулятора, канал 2 – выходное напряжение, канал 3 – напряжение на плюсовом выводе «верхнего» суперконденсатора).
Подведение итогов и перспективы
В обычной электронике обычно встречаются электрохимические источники энергии: батареи и аккумуляторы. Но стоит помнить, что ионисторы хотя еще не готовы к полной замене обычных источников питания с технологической точки зрения – идеально подходят для их поддержки в устройствах, требующих поддержания питания после сбоя энергии от основного источника, или в качестве дополнительных аккумуляторов, используемых для компенсации падений напряжения нагрузки. Пройдёт ещё несколько лет и ситуацию серьёзно изменится, так как активные разработки ведутся многими фирмами.