Вортекс генератор на авто для чего
Vortex Generators: How Do They Work?
The new Civic Type-R prototype didn’t hold back on aero, with the addition of a Mitsubishi Evo-style spiked roof. So what is the function of these intricate fins?
The new Honda Civic Type R prototype revealed at the Paris Motorshow was one of the most exciting cars to be presented, with brutish and aggressive styling we all hope makes it to production. Of all the crazy aero bits though, one particular element caught our attention: the little lumps at the top of the rear windscreen. They are called vortex generators, which were most famously used before on the Mitsubishi Lancer Evolution, and have become a niche modification for aero-obsessed petrolheads out there.
To understand what benefits they bring to a car’s aerodynamics, we must first look at how airflow interacts with the moving body of a car. Due to friction between the solid surface and the air molecules passing over it, the air forms a fluid profile, with stationery air sitting at the meeting point between the fluid and the surface. This profile can also be called the boundary layer. The air speed then increases to what is called free stream velocity as the distance increases from the car’s body, as can be seen in the diagram below.
In terms of flow efficiency then, you want the air to be moving across the car as quickly as possible to avoid creating a large amount of friction, instead gliding smoothly over and away from the car. In terms of a car’s roof, the air is going to follow the curvature of the roof as much as possible, which is known as an ‘attached flow’.
So, bringing a rear wing into the equation, the ideal situation would be a nice attached flow that follows the entire roofline of the car and acts upon the wing, both increasing downforce and the wing’s overall aerodynamic efficiency.
Unfortunately, the airflow reaches a separation point somewhere around the end of the roof and diffuses off into free air space, leaving turbulent, slow-moving air to crash about the boot area meaning very little fluid flow ever makes it smoothly down to the wing. Factors like the rake of the windscreen and the curvature of the roofline have big implications on the characteristics of the airflow over the car and contribute to the placement of the point of separation.
To keep an attached flow going for as long as possible, you need high energy air. So, looking at the fluid profile, you want to get the high energy air from the top of the profile as far down and therefore as near to the car’s body as possible.
Via YouTube channel KYLE.DRIVESWhat the vortex generator does is disturb the airflow running over the bodywork, producing a swirl of air in-between the high energy and low energy streams. This draws in a stream of high energy air from free stream down into the boundary layer, increasing the boundary layer’s energy. High energy air sticks to the bodywork much more effectively and therefore increases the attached flow.
This is the reason that – on cars – vortex generators are found spaced across the end of the roofline, exploiting as much of the high energy air as possible. On road cars however, the design of them is not the most efficient. On airplanes and Formula One cars, vortex generators are sharp-edged and often triangular to create the most effective vortex possible at very high speeds. But on mass-produced road cars, safety regulations dictate that they need to be smoothed-off and rounded which decreases their effect on the air flow, resembling much more of a purely aesthetic component than people may presume.
The efficiency of aerodynamic components generally increases with velocity, hence why F1 cars can justify exploiting vortex generators within their design, but the airflow passing over a normal road car – even on track – is normally just not quick enough. This is why rear wings are only really functional on a road car if they are positioned high enough from the body to intercept any high energy airflow. So the Civic may just get away with it considering its pronounced wing position, but the devices will only have a significant effect at very high speeds.
Have you modified your car to exploit vortex generators? And does the Evo-esque styling improve the look of the already bonkers Civic Type R? Comment below with your thoughts on the quirky little aero devices.
Vortex Generator
В виду форы задней части крыши у Evo 7-9, в районе заднего стекла и антикрыла образуется зона завихрения (турбулентности) Эту проблему помогает решить Vortex Generator. Он выравнивает потоки превращая их в ламинарный поток и увеличивает прижимную силу. Ну и от части это круто выглядит 😉
В переводе с английского Vortex generator – генератор вихревого потока, также известный как аэродинамический рассекатель. В аэродинамике, vortex generator (далее VG), представляет собой поверхность, состоящую из небольших выгибов или лопаток (похожих на плавник), треугольной или четырехугольной формы, которые создают вихревой поток. VG применяют на многих устройствах и во многих областях, но наибольшее распространение Vortex Generators получил в авиастроении.
Аэродинамические рассекатели используются для разделения и задержки встречного воздушного потока и аэродинамического срыва, таким образом, они улучшают эффективность работы крыльев (в самолётостроении) и рулевых поверхностей.
Принцип действия
Применительно к автомобилям, аэродинамические рассекатели создают сильные направленные вихревые потоки сзади транспортного средства, предотвращая срыв потоков воздуха (т.к. создают ламинарное обтекание) и предотвращая образование зоны повышенного давления.
Без рассекателей
На транспортном средстве, не оборудованном аэродинамическими рассекателями, во время движения в его задней части образуются турбулентные потоки воздуха, которые ухудшают устойчивость и управляемость авто на дороге, а также увеличивают его аэродинамическое сопротивление, повышая тем самым расход топлива.
С рассекателями
На транспортном средстве, с установленными аэродинамическими рассекателями, во время движения в его задней части образуется ламинарное обтекание воздухом, при котором зона разряжения сводится к минимуму, значительно увеличивается курсовую устойчивость и управляемость транспортного средства на дороге. Так же снижается коэффициент аэродинамического сопротивления и, соответственно, уменьшается расход топлива, загрязнение заднего стекла так же уменьшается.
Результаты испытаний и применение
Испытания показали улучшение аэродинамических характеристик в результате применения аэродинамических рассекателей. Результат использования будет ощутим при езде свыше 60 км/ч особенно в дождь или на пыльной дороге. Разумеется, устанавливать их имеет смысл не на все автомобили, так как максимальный эффект будет ощутим при езде на очень высоких скоростях. Вы наверняка знаете и видели такие автомобили как Subaru Impreza WRX STi и Mitsubishi Lancer Evolution. О них уже позаботились такие тюнинг-ателье как Voltex и Rexpeed, которые имеют серьезный подход и технологическую базу для создания аэродинамических обвесов прошедших множество испытаний.
Для количественной характеристики аэродинамического сопротивления используют следующую зависимость:
где: Р — плотность воздуха;
V — скорость относительного движения воздуха и машины;
FMID — площадь наибольшего поперечного сечения автомобиля (лобовая площадь);
CX — коэффициент лобового сопротивления воздуха (коэффициент обтекаемости).
Обратите внимание на то, что скорость в формуле стоит в квадрате, а это значит: при увеличении скорости движения транспортного средства в 2 раза, сила сопротивления воздуха увеличивается в 4 раза, а затраты мощности вырастают в 8 раз! И так далее в геометрической прогрессии. Поэтому при движении автомобиля в городском потоке аэродинамическое сопротивление автомобиля мало, на трассе же его значение достигает больших величин. А что говорить о гоночных болидах, движущихся со скоростями 300 км/час. В таких условиях практически вся вырабатываемая двигателем мощность тратиться на преодоление сопротивления воздуха. Причем за каждый лишний км/ч прироста максимальной скорости автомобиля приходится платить существенным увеличением его мощности или снижением CX. Так, например, работая над увеличением скоростных возможностей болидов, участвующих в кольцевых гонках Nascar, инженеры выяснили, что для увеличения максимальной скорости на 8 км/ч потребуется прирост мощности двигателя в 62 кВт! Или уменьшение СX на 15%.
Аэродинамическое сопротивление автомобиля обусловлено движением последнего с некоторой относительной скоростью в окружающей воздушной среде. Дело все в том, что уже при скорости движения 50-60 км/час сила лобового сопротивления (которую еще называют сопротивлением давления) превышает любую другую силу сопротивления движению автомобиля, а начиная с 80 км/час превосходит всех их вместе взятых.
От величины CX Вашего автомобиля в прямой зависимости находится количество расходуемого им топлива, а значит и денежная сумма оставляемая Вами у бензоколонки.
Благо, есть ряд деталей, применение которых позволяет уменьшить аэродинамическое сопротивление, коими и являются аэродинамические рассекатели.
Поэтому, даже незначительное, снижение аэродинамического сопротивления автомобиля сказывается многократно на экономии топлива и повышении курсовой устойчивости!
Теоретическое обоснование работы Рассекателей
На сегодняшний день величину силы аэродинамического сопротивления транспортного средства воздушному потоку возможно определить только экспериментально. Пока точных методик теоретического расчета этой величины нет.
Для расчета количественной характеристики аэродинамического сопротивления используют следующую зависимость:
Сx — коэффициент сопротивления воздуха (коэффициент обтекаемости);
p — плотность воздуха;
v — скорость автомобиля;
S — площадь наибольшего поперечного сечения автомобиля (лобовая площадь).
Скорость в формуле стоит в квадрате. Это значит, что при увеличении скорости движения транспортного средства в 2 раза, сила сопротивления воздуха увеличивается в 4 раза, а затраты мощности, необходимые на ее преодоление, вырастают в 8 раз! И так далее в геометрической прогрессии.
При скорости движения 50-60 км/ч сила сопротивления воздуха превышает любую другую силу сопротивления движению транспортного средства, а на скоростях свыше 80 км/ч превосходит их все вместе взятые.
Самая значительная часть всех аэродинамических потерь, до 60%, — сопротивление формы, т.е. кузова. Часто его называют лобовым сопротивлением.
Известно, что при езде двух формульных болидов друг за другом, уменьшается не только сопротивление движению заднего автомобиля, идущего в воздушном мешке, но и переднего, по измерениям в аэродинамической трубе на 27%. Происходит это вследствие частичного заполнения зоны пониженного давления и уменьшения разрежения за ним.
Сила лобового сопротивления возникает за счет разницы давлений воздуха, впереди и сзади автомобиля.
Механизм его возникновения следующий. При движении транспортного средства в окружающей воздушной среде в его передней части происходит сжатие набегающего потока воздуха. В результате чего здесь образуется область повышенного давления, а в задней части пониженного. Под влиянием разницы этих давлений струйки воздуха устремляются к задней части. Однако в некоторый момент они начинают отрываться от обтекаемой ими поверхности и в итоге окончательно срываются с кузова, образуя при этом хаотичные завихрения воздуха, увеличивающие аэродинамическое сопротивление транспортного средства.
Чем позже происходит срыв воздушного потока с обтекаемой поверхности, тем меньшей будет сила лобового сопротивления.
Аэродинамика влияет ни только на скоростные качества автомобиля и расход топлива. Она еще обеспечивает должный уровень курсовой устойчивости, управляемости и снижение шумов при движении.
Аэродинамические шумы, возникающие при движении автомобиля, свидетельствуют о его плохой аэродинамике или же о ее отсутствии вообще. Генерируются они за счет вибраций элементов кузова в моменты срыва воздушного потока с их поверхности. По наличию или отсутствию шумов на высоких скоростях можно определить степень проработки конструкции автомобиля в аэродинамическом смысле.
Даже незначительное снижение аэродинамического сопротивления автомобиля сказывается на его устойчивости, управляемости и общем расходе топлива!
СОДЕРЖАНИЕ
Метод работы
Послепродажная установка
Многие самолеты оснащены крыльчатыми вихревыми генераторами с момента их производства, но есть также поставщики послепродажного обслуживания, которые продают комплекты VG для улучшения характеристик КВП некоторых легких самолетов. Поставщики послепродажного обслуживания заявляют (i) что VG снижают скорость сваливания и скорость взлета и посадки, и (ii) что VG повышают эффективность элеронов, рулей высоты и рулей направления, тем самым улучшая управляемость и безопасность на низких скоростях. Для самодельных и экспериментальных китпланов VG дешевы, рентабельны и могут быть быстро установлены; но для сертифицированных авиационных установок затраты на сертификацию могут быть высокими, что делает модификацию относительно дорогостоящим процессом.
Владельцы сообщают, что на земле может быть труднее очистить снег и лед с поверхностей крыла с помощью VG, чем с гладкого крыла, но VG, как правило, не склонны к обледенению в полете, поскольку они находятся в пограничном слое воздушного потока. У VG могут быть острые края, которые могут порвать ткань обшивки планера, и поэтому могут потребоваться специальные покрытия.
Увеличение максимальной взлетной массы
В США с 1945 по 1991 год требование набора высоты с одним неработающим двигателем для многомоторных самолетов с максимальной взлетной массой 6000 фунтов (2700 кг) или меньше было следующим:
Все многомоторные самолеты, имеющие скорость сваливания более 70 миль в час, должны иметь постоянную скорость набора высоты не менее футов в минуту на высоте 5000 футов при неработающем критическом двигателе, а остальные двигатели работают не более чем на максимальной скорости. постоянная мощность, неработающий гребной винт в положении минимального сопротивления, шасси убрано, закрылки в наиболее выгодном положении… V s 0 <\ displaystyle V_
> 0,02 ( V s 0 ) 2 <\ Displaystyle 0,02 (V_
) ^ <2>>
Установка вихревых генераторов обычно может привести к небольшому снижению скорости сваливания самолета и, следовательно, к снижению требуемых характеристик набора высоты при неработающем одном двигателе. Снижение требований к характеристикам набора высоты позволяет увеличить максимальный взлетный вес, по крайней мере, до максимального веса, разрешенного конструктивными требованиями. Увеличение максимального веса, разрешенного конструктивными требованиями, обычно может быть достигнуто путем указания максимального веса с нулевым топливом или, если максимальный вес с нулевым топливом уже указан в качестве одного из ограничений самолета, путем определения нового более высокого максимального веса с нулевым топливом. По этим причинам комплекты вихревых генераторов для многих легких двухмоторных самолетов сопровождаются уменьшением максимального веса без топлива и увеличением максимального взлетного веса.
Требование к скорости набора высоты при неработающем одном двигателе не распространяется на однодвигательные самолеты, поэтому увеличение максимальной взлетной массы (на основе скорости сваливания или конструктивных соображений) менее значимо по сравнению с аналогичными показателями для близнецов 1945–1991 гг.
После 1991 года требования сертификации летной годности в США определяют требование набора высоты с одним неработающим двигателем как градиент, не зависящий от скорости сваливания, поэтому у генераторов вихрей меньше возможностей увеличить максимальную взлетную массу многомоторных самолетов, сертификационная основа которых FAR 23 с поправкой 23-42 или более поздней версии.
Максимальный посадочный вес
Поскольку посадочная масса большинства легких самолетов определяется конструктивными особенностями, а не скоростью сваливания, большинство комплектов VG увеличивают только взлетную массу, а не посадочную. Любое увеличение посадочной массы потребует либо структурных изменений, либо повторных испытаний самолета при более высокой посадочной массе, чтобы продемонстрировать, что требования сертификации по-прежнему выполняются. Однако после продолжительного полета могло быть израсходовано достаточное количество топлива, в результате чего самолет вернулся ниже разрешенной максимальной посадочной массы.
Снижение шума самолета
Вихревые генераторы используются на нижней стороне крыла самолетов семейства Airbus A320 для снижения шума, создаваемого воздушным потоком через круглые отверстия для выравнивания давления в топливных баках. Lufthansa утверждает, что таким образом можно добиться снижения уровня шума до 2 дБ.
Вортекс генератор на авто для чего
Группа:
Технический Маньяк
Сообщений: 1028
Регистрация: 19.2.2009
Из: Симферополь
Вне форума
Авто: L200 2.5 DI-D AT Sportero
Репутация: 47
Рассекатели создают сильные направленные завихрения воздуха сзади транспортного средства, предотвращая срыв потоков воздуха и образование зоны пониженного давления.
На любом автомобиле, не оборудованным аэродинамическими рассекателями, во время движения в задней части образуются турбулентные потоки, которые «придерживают» и приподнимают ее, а также ухудшают устойчивость автомобиля на дороге, увеличивают его аэродинамическое сопротивление и соответственно повышая расход топлива.
Установленные на автомобиле аэродинамические рассекатели сводят к минимуму зону пониженного давления (зону разряженности) в задней части транспортного средства, предотвращая загрязнение стекла заднего вида во время движения, повышая курсовую устойчивость и снижая коофициент аэродинамического сопротивления корпуса автомобиля, уменьшая тем самым расход топлива.
Для инфы:
Для количественной характеристики аэродинамического сопротивления используют следующую зависимость:
Обратите внимание на то, что скорость в формуле стоит в квадрате, а это значит: при увеличении скорости движения транспортного средства в 2 раза, сила сопротивления воздуха увеличивается в 4 раза, а затраты мощности вырастают в 8 раз. И так далее в геометрической прогрессии. Поэтому при движении автомобиля в городском потоке аэродинамическое сопротивление автомобиля мало, на трассе же его значение достигает больших величин. А что говорить о гоночных болидах, движущихся со скоростями 300 км/час. В таких условиях практически вся вырабатываемая двигателем мощность тратиться на преодоление сопротивления воздуха. Причем за каждый лишний км/ч прироста максимальной скорости автомобиля приходится платить существенным увеличением его мощности или снижением CX. Так, например, работая над увеличением скоростных возможностей болидов, участвующих в кольцевых гонках Nascar, инженеры выяснили, что для увеличения максимальной скорости на 8 км/ч потребуется прирост мощности двигателя в 62 кВт! Или уменьшение СX на 15%.
Аэродинамическое сопротивление автомобиля обусловлено движением последнего с некоторой относительной скоростью в окружающей воздушной среде. Дело все в том, что уже при скорости движения 50-60 км/час сила лобового сопротивления (которую еще называют сопротивлением давления) превышает любую другую силу сопротивления движению автомобиля, а начиная с 80 км/час превосходит всех их вместе взятых.
От величины CX Вашего автомобиля в прямой зависимости находится количество расходуемого им топлива, а значит и денежная сумма оставляемая Вами у бензоколонки.
Благо, есть ряд деталей, применение которых позволяет уменьшить аэродинамическое сопротивление, коими и являются аэродинамические рассекатели.
Поэтому, даже незначительное, снижение аэродинамического сопротивления автомобиля сказывается многократно на экономии топлива и повышении курсовой устойчивости!
Во всех случаях результаты испытаний показали улучшение аэродинамического обтекания автомобиля и упорядочивание воздушных потоков в его задней части. Что в свою очередь дает все выше перечисленные эффекты от применения аэродинамических рассекателей.
Аэродинамические рассекатели замечательно работают на всех скоростях выше 30 км/ч Улучшение аэродинамики на машине будет хорошо заметно при езде в дождь или по пыльной дороге на скорости 60 км/ч и выше.
По материалам «Проект Мастерской Разумных Решений тм»[/size]
Был куплен вот такой набор из 10шт. Материал-ABC пластик, окрашены в чёрный цвет, можно купить загрунтованные под покраску. Был упакован в блистер + подробная, понятная, схематическая инструкция + лекало с транспортиром + 3M скотч уже выбитый под каждый гребешок.
Сам генератор
Лекало с угломером (2шт) т.к. каждый гребень ставится под определённым углом
0 5 10 15 15 :15 15 10 5 0 градусов
Процесс установки очень прост, главное правильно разметить крышу авто) Нам нужны 2 линии: продольный центр (делит крышу на лево и право) и поперечный центр для ориентировки гребней. Гребни ставятся ближе к заднему срезу крыши, длина гребня 80мм. Для них мы подготовили полосу шириной 100мм с поперечным центорм в 50мм. Относительно этой линии и выставляется угол установки гребня.
Установка начинается от средины крыши. Оба лекала ориентируются параллельно центру крыши а гребни по поперечной оси, затем выставляется угол 15гр и гребешки клеются. Так повторяется для каждого гребня с учётом градуса.
Конечный результат