Вычислительная машина и вычислительная система отличие

Понятия ЭВМ и ВС

Лекция 1. Введение в предмет. Понятия ЭВМ и ВС

эвм, вс, архитектура

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

ЭВМ (Computer, вычислительная машина)

– это средство, предназначенное для автоматической обработки информации – данных (прежде всего в процессе решения вычислительных и информационно-логических задач)

ВС (вычислительная система, суперкомпьютер)

– совокупность взаимосвязанных и взаимодействующих процессоров или вычислительных машин, периферийного оборудования и программного обеспечения, предназначенную для подготовки и решения задач пользователей

Формально, отличие ВС от ВМ выражается в количестве вычислителей. Множественность вычислителей позволяет реализовать в ВС параллельную обработку. С другой стороны, современные вычислительные машины с одним процессором также обладают определенными средствами распараллеливания вычислительного процесса. Иными словами, грань между ВМ и ВС часто бывает весьма расплывчатой.

Если же рассматривать 3 компонента архитектуры (способ обработки информации, структуру устройств и сами устройства, составляющие ЭВМ и ВС), то можно считать в концептуальном плане ВС диалектической противоположностью ЭВМ.

ЭВМВС
Обработка информацииПоследовательнаяПараллельная
Структура устройствФиксированнаяПрограммируемая
УстройстваНеоднородныеОднородные

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Заблуждение о том, что ЭВМ и компьютер – это «две большие разницы»

Вспоминая сокращение и перевод, получаем:

Другими словами, и то, и другое является вычислителем. Первый термин лишь подчеркивает, что вычислитель является (а) машиной, а не человеком, и (б) электронной машиной, а не механической, к примеру, он не является арифмометром. Второй термин таких уточнений в себе не несёт.

Происхождение, значение и сопоставление

Слово computer появилось в английском литературном языке в начале XVII века [1 ], правда, тогда оно означало «человек, занимающийся вычислениями». В конце девятнадцатого века у этого слова появилось второе значение «машина-вычислитель», но лишь в середине XX века второе значение «машина-вычислитель» вытеснило первое. И теперь computer означает в английском языке любую вычислительную машину: аналоговую, цифровую, гибридную и пр.

Слово ЭВМ (точнее, ЭСМ, электронная счётная машина) появилось в СССР в сороковых годах XX века, т. е. в то же самое время, когда за словом computer в английском языке закрепилось значение машины-вычислителя. Однако с самого начала сокращение ЭВМ подразумевало не любую машину, а электронную.

— дискретными (цифровыми) вычислительными блоками, а не аналоговыми;

— электронным (не механическим) устройством вычислительных блоков;

— автоматической обработкой данных по заданной программе;

Дискретность вычислителя означает, что операндами в вычислительных операциях являются числа, состоящие, естественно, из цифр, поэтому второе название дискретного вычислителя «цифровой».

Автоматическая обработка данных предполагает невмешательство человека в обработку, пока она не завершится. Разумеется также, что обработка достаточно «длинная», т. е. состоит из нескольких операций, иначе нет смысла устраивать автоматическую обработку. Переключение с одной операции на следующую управляется программой, а не человеком.

Сегодня программы универсального компьютера должны, по-прежнему, уметь делать любые расчеты, проводить численное моделирование физических процессов, раскодировать ДНК, обрабатывать картинки, географические карты, тексты, показывать кино, проигрывать музыку, распознавать образы и пр. Все только что перечисленные возможности программ являются внешними проявлениями внутренних способностей компьютера. Само собой разумеется, что внешние проявления основаны на внутренних способностях алгебраических, арифметических и логических блоков, которые остаются по-прежнему исключительно вычислительными. Других внутренних способностей у компьютера просто нет.

Неуниверсальный, специализированный вычислитель и его программы умеют делать что-нибудь одно: либо обрабатывать картинки, либо прокладывать маршрут по географической карте, либо показывать кино. Специализированный вычислитель называют контроллером. Контроллерами, а не компьютерами являются вычислители, встроенные в коммуникаторы, навигаторы, видеорегистраторы, стиральные машины и прочие бытовые приборы. Контроллеры, встроенные в движущиеся механизмы (самолеты, автомобили, танки), называют бортовыми.

Смена программ в ЭВМ означает, что её владелец, а не производитель, может легко выбрать для исполнения любую из установленных на ЭВМ программ или установить новую программу, которая появилась даже позже, чем была выпущена эта ЭВМ.

Прародительницами всех ЭВМ можно считать вычислительные машины, которые бывают трех типов: аналоговые, дискретные или цифровые, гибридные. Цифровые вычислительные машины могут быть механическими (арифмометр), электротехническими (машина Конрада Цузе на реле), электронными. Последние и называются ЭВМ или компьютерами. Еще раз стоит отметить, что в английском языке словом computer называют любые вычислительные машины.

На классификационной схеме (Рисунок 1 ) достаточно полно показана та ветвь вычислительных машин, которая ведёт от вычислительных машин к ЭВМ и их разновидностям. Прочие классификационные ветви не полны. На схеме также показано место нескольких английских понятий.

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

На схеме достаточно полно показана (и выделена цветом) только ветвь ЭВМ.

— место ЭВМ в семействе вычислительных машин;

— классификационную равнозначность терминов «ЭВМ» и «компьютер»;

— деление персональных компьютеров на два вида: стационарные (например, настольные) и носимые (например, ноутбуки и планшеты).

Возможно, что после появления и массового распространения оптических или биологических вычислительных машин термин «компьютер» станет по значению гораздо шире термина «электронная вычислительная машина». Возможно, что тогда появится термин «оптическая вычислительная машина, ОВМ» или, скорее, «оптический компьютер». Тогда изменится классификационная схема.

Кстати, производные понятия: ПЭВМ ( » персональная ЭВМ » ) и » персональный компьютер » сошлись в русском бытовом языке гораздо ближе между собой, чем исходные.

Слова ЭВМ и компьютер нельзя противопоставлять. В современном русском языке в научном, юридическом и техническом смыслах они означают одно и то же.

Когда в быту говорят «компьютер», то чаще имеют в виду «персональный компьютер» только потому, что с другими ЭВМ мало знакомы.

Слово «компьютер» постепенно вытесняет слово «ЭВМ». Возможно, что вскоре термин «компьютер» будет означать не только электронную (возможно, что вообще не электронную), а оптическую или биологическую основу вычислительной машины, то есть станет по значению гораздо шире термина «электронная вычислительная машина». Тогда понятия ЭВМ и компьютер разойдутся в значениях.

1 От железного занавеса, впрочем, была кое-какая польза. Изоляция заставляла переводчиков переводить иноязычные термины на русский язык, а не просто пытаться произнести их на русский лад. К примеру, недавно я обнаружил в научной книге 60-х годов перевод слова gadget ; он звучал как «штуковина».

Источник

Вычислительная машина и вычислительная система отличие

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Вычислительные системы»

Понятие вычислительной системы

В связи с кризисом классической структуры ЭВМ дальнейшее поступательное развитие вычислительной техники напрямую связано с переходом к параллельным вычислениям, с идеями построения многопроцессорных систем и сетей, объединяющих большое количество отдельных процессоров и (или) ЭВМ. Здесь появляются огромные возможности совершенствования средств вычислительной техники. Но следует отметить, что при несомненных практических достижениях в области параллельных вычислений, до настоящего времени отсутствует их единая теоретическая база.

Под вычислительной системой (ВС) понимают совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для сбора, хранения, обработки и распределения информации.

Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели: повышение производительности системы за счет ускорения процессов обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Параллелизм в вычислениях в значительной степени усложняет управление вычислительным процессом, использование технических и программных ресурсов. Эти функции выполняет операционная система ВС.

Классификация вычислительных систем

Существует большое количество признаков, по которым классифицируют вычислительные системы.

Взаимодействие на уровне оперативной памяти (ОП) сводится к программной реализации общего поля оперативной памяти, что несколько проще, но также требует существенной модификации ОС. Под общим полем имеется в виду равнодоступность модулей памяти: все модули памяти доступны всем процессорам и каналам связи.

На уровне каналов связи взаимодействие организуется наиболее просто и может быть достигнуто внешними по отношению к ОС программами-драйверами, обеспечивающими доступ от каналов связи одной машины к внешним устройствам других (формируется общее поле внешней памяти и общий доступ к устройствам ввода-вывода).

Все вышесказанное иллюстрируется схемой взаимодействия компьютеров в двухмашинной ВС, представленной на рис. 1.

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие
Рис. 1. Схема взаимодействия компьютеров в двухмашинной ВС

Ввиду сложности организации информационного взаимодействия на 1-м и 2-м уровнях в большинстве многомашинных ВС используется 3-й уровень, хотя и динамические характеристики (в первую очередь быстродействие), и показатели надежности таких систем существенно ниже.

Многопроцессорные системы (МПС) содержат несколько процессоров, информационно взаимодействующих между собой либо на уровне регистров процессорной памяти, либо на уровне ОП. Этот тип взаимодействия используется в большинстве случаев, ибо организуется значительно проще и сводится к созданию общего поля оперативной памяти для всех процессоров. Общий доступ к внешней памяти и устройствам ввода-вывода обеспечивается обычно через каналы ОП. Важным является и то, что многопроцессорная вычислительная система работает под управлением единой ОС, общей для всех процессоров. Это существенно улучшает динамические характеристики ВС, но требует наличия специальной, весьма сложной ОС.

Однако МПС имеют и существенные недостатки. Они, в первую очередь, связаны с использованием ресурсов общей оперативной памяти. При большом количестве объединяемых процессоров возможно возникновение конфликтных ситуаций, в которых несколько процессоров обращаются с операциями типа ”чтение” и ”запись” к одним и тем же ячейкам памяти. Помимо процессоров к ОП подключаются все процессоры ввода-вывода, средства измерения времени и т.д. Поэтому вторым серьезным недостатком МПС является проблема коммутации и доступа абонентов к ОП. Процедуры взаимодействия очень сильно усложняют структуру ОС МПС. Опыт построения подобных систем показал, что они эффективны при небольшом числе объединяемых процессоров (от 2 до 10). Схема взаимодействия процессоров в ВС показана на схеме рис. 2. Типичным примером массовых многомашинных ВС могут служить компьютерные сети, примером многопроцессорных ВС — суперкомпьютеры.

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Рис. 2. Схема взаимодействия процессоров в ВС

Неоднородная ВС включает в свой состав различные типы компьютеров или процессоров. При построении системы приходится учитывать их различные технические и функциональные характеристики, что существенно усложняет создание и обслуживание неоднородных систем.

В децентрализованных системах функции управления распределены между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ, интерес к децентрализованным системам постоянно растет.

В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления. Перераспределение функций осуществляется в ходе вычислительного процесса, исходя из сложившейся ситуации.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

На рис. 3 представлена принципиальная схема классификации вычислительных систем.

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Рис. 3. Принципиальная схема классификации вычислительных систем.

Суперкомпьютеры и особенности их архитектуры

К суперкомпьютерам относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов — десятки миллиардов операций в секунду. Создать такие высокопроизводительные компьютеры на одном микропроцессоре (МП) не представляется возможным ввиду ограничения, обусловленного конечным значением скорости распространения электромагнитных волн (300 000 км/с), т.к. время распространения сигнала на расстояние несколько миллиметров (линейный размер стороны МП) при быстродействии 100 млрд операций/с становится соизмеримым со временем выполнения одной операции. Поэтому суперкомпьютеры создаются в виде высокопараллельных многопроцессорных вычислительных систем (МПВС).

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Рис. 3. Условные структуры однопроцессорной (SISD) и названных многопроцессорных ВС

Кластерные суперкомпьютеры и особенности их архитектуры

Существует технология построения больших компьютеров и суперкомпьютеров на базе кластерных решений. По мнению многих специалистов, на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер.

Удобство построения кластерных ВС заключается в том, что можно гибко регулировать необходимую производительность системы, подключая к кластеру с помощью специальных аппаратных и программных интерфейсов обычные серийные серверы до тех пор, пока не будет получен суперкомпьютер требуемой мощности. Кластеризация позволяет манипулировать группой серверов как одной системой, упрощая управление и повышая надежность.

Важной особенностью кластеров является обеспечение доступа любого сервера к любому блоку как оперативной, так и дисковой памяти. Эта проблема успешно решается, например, объединением систем SMP-архитектуры на базе автономных серверов для организации общего поля оперативной памяти и использованием дисковых систем RAID для памяти внешней (SMP — Shared Memory multiprocessing, технология мультипроцессирования с разделением памяти).

Для создания кластеров обычно используются либо простые однопроцессорные персональные компьютеры, либо двух- или четырех- процессорные SMP-серверы. При этом не накладывается никаких ограничений на состав и архитектуру узлов. Каждый из узлов может функционировать под управлением своей собственной операционной системы. Чаще всего используются стандартные ОС: Linux, FreeBSD, Solaris, Unix, Windows NT. В тех случаях, когда узлы кластера неоднородны, то говорят о гетерогенных кластерах.

1 пример из «жизни» систем

Blue Gene будет состоять из 130 тысяч процессоров, и его производительность будет составлять 360 терафлопс.

Чипы IBM используются в системе, неформально называемой Big Mac. PowerPC 970 состоит из 1100 двухпроцессорных компьютеров Apple G5, занимая в общем списке третью строчку, с производительностью в 10,3 триллионов операций в секунду.

Процессоры Opteron используются в 2816-процессорном кластере, и его производительность составляет 8 триллионов операций в секунду.

Интересен факт, что общая производительность 500 лучших систем растет экспоненциально, увеличиваясь в десять раз примерно каждые четыре года. Порог в 1000 терафлопов (триллионов операций в секунду) планируется достигнуть к 2005 году.

Источник

Основные понятия и определения. Лекция 1. Основные понятия вычислительной техники и принципы организации вычислительных систем

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Вычислительная машина и вычислительная система отличие. Смотреть фото Вычислительная машина и вычислительная система отличие. Смотреть картинку Вычислительная машина и вычислительная система отличие. Картинка про Вычислительная машина и вычислительная система отличие. Фото Вычислительная машина и вычислительная система отличие

Лекция 1. Основные понятия вычислительной техники и принципы организации вычислительных систем

Электронные вычислительные средства завоевали прочные позиции в жизненно важных сферах деятельности человека, и область их применения постоянно расширяется. Современная вычислительная техника (ВТ) представлена широким спектром средств обработки информации.

Развитие средств ВТ идёт по двум направлениям /1/:

1) Электронно-вычислительные машины (ЭВМ) и простейшие вычислительные системы (ВС). Эти вычислительные средства основываются на эволюционных модификациях концептуальной последовательной машины Дж. фон Неймана (1945 г.). Процесс их развития отражён в ЭВМ первого (1949 г., электронные лампы), второго (1955 г., транзисторы) и третьего (1963 г., интегральные схемы) поколений. Пределом в этой модификации является конвейерный способ обработки информации в сочетании с векторизацией. По сути, такие ВМ представляют собой простейшие ВС. Вычислительные средства данного направления постоянно совершенствуются, главным образом, за счёт улучшения физико-технических характеристик элементов и внутренних информационных каналов.

2) Вычислительные системы (ВС) – базируются на принципе массового параллелизма при работе с информацией Данное направление ориентировано на применение полупроводниковых пластин с большим количеством обработки данных. ВС относятся к четвёртому и последующим поколениям средств ВТ.

Введём несколько определений /1, 2/.

Система – это совокупность элементов, соединённых между собой для достижения определенной цели. Понятие системы трактуется достаточно широко: практически каждое средство ВТ может рассматриваться как система – ВМ, сети, системы параллельной обработки данных и т.п.

Вычислительная машина – это система, выполняющая заданную, чётко определённую последовательность операций (программу) в соответствии с выбранным алгоритмом обработки информации.

Алгоритм – набор предписаний, однозначно определяющий содержание и последовательность выполнения действий для решения задач.

Вычислительная система – это информационная система, настроенная на решение задач конкретной области применения, т.е. в ней имеется аппаратная и программная специализация. Вычислительные системы бывают многопроцессорными (содержат несколько процессоров, между которыми происходит интенсивный обмен информацией; имеют единое управление вычислительными процессами) и микропроцессорными (строятся на базе микропроцессора или микроконтроллера, либо специализированного процессора цифровой обработки сигналов; используются для локального управления технологическим оборудованием в технических и бытовых системах).

Для наглядного представления ВС их изображают в виде схем, состоящих из блоков и связей между ними. Такие схемы представляют собой ориентированный граф, вершины которого – блоки.

В функциональной схеме блоки выделяются по функциональному признаку, в структурной схеме блоки соответствуют конструктивным компонентам – устройствам, узлам, интегральным схемам. Отдельные блоки функциональной и структурной схем могут совпадать. С каждым блоком связаны входы, выходы и функция, которая задаёт правила получения выходных последовательностей по входным последовательностям.

Структура – это совокупность элементов и их связей.

Функциональная организация ВС – это представление её как абстрактной системы в виде функциональной схемы, иллюстрирующей результат функциональной декомпозиции. Для сложных систем, таки как вычислительные машины и сети, часто используется иерархия представлений.

Структурная организация ВС— это представление её как системы в виде схемы, содержащей реально реализуемые устройства, узлы, элементы.

Функциональные схемы ВС состоят из блоков, каждый из которых является преобразователем информации.

Преобразователь информации – это некоторый блок, имеющий входы для поступления информации и некоторые выходы, на которых представлена выходная информация.

Информация в ВС представляется в виде двоичных кодов фиксированной длины (машинных слов). Для получения, передачи, хранения и обработки информации используются аппаратные и программные средства, называемые вычислительными ресурсами.

Многоуровневая иерархия аппаратных и программных средств, из которых строится ВМ или ВС, называется архитектуройВМ (ВС). Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения вычислительных машин.

Несколько вычислительных машин или вычислительных систем, информационно связанных между собой, образуют вычислительный комплекс. При этом каждая машина самостоятельно управляет своими вычислительными процессами, и информационный обмен между вычислительными машинами комплекса не является интенсивным (например, цех, корабль и т.д.).

Сеть (компьютерная, информационно- вычислительная) – это информационная система, которая состоит из множества абонентских систем и телекоммуникационной системы для их информационного взаимодействия. Отличительной особенностью сетей являются развитые функции информационного взаимодействия.

Множество операций над данными и порядок выполнения этих операций называется моделью вычислений. В рамках изучения принципов работы вычислительных машин, систем и сетей подразумевается модель вычислений, заложенная в оборудование и, следовательно, зависящая от их (вычислительных машин) структуры и архитектуры.

Ознакомившись с основными терминами, перейдем к рассмотрению подходов к организации вычислительных машин и систем, а также их характеристик.

Источник

Вычислительные машины

Вычислительные машины, являются неотъемлемой частью современной жизни. В повседневной жизни человек ежесекундно сталкивается с разного рода вычислениями или результатом таковых.

В процессе своего развития вычислительная техника прошла долгий путь эволюции от простейших палочек для вычисления до машин, способных выполнить любое математическое действие в тысячные доли секунды.

Самым простым примером продвинутой вычислительной машины, является компьютер, который постоянно принимает, обрабатывает и передает данные. Весь текст и картинки, которые видны на экране для компьютера, выглядят как бинарный код из «1» и «0».

В зависимости от порядка расположения «1» и «0» вычислительная машина выводит на экран тот или иной символ.

История развития вычислительных машин

История развития вычислительных машин начала еще в древние времена, когда для выполнения простейших вычислительных операций, человек использовал средства для визуализации счета.

Первыми известными приспособлениями для вычисления являются счетные палочки. Далее, в процессе эволюции счетные палочки изменили свой внешний вид. Например, во многих религиях для отсчета количества прочитанных молитв стали применять четки.

Не так давно, на одном из античных судов было найдено устройство, которое могло выполнять простые математические операции. Главной особенностью этой находки, являлось назначение устройства: механизм был создан для вычисления лунных фаз и, скорее всего, использовались как календарь.

Ученые пришли к выводу, что технология производства такой машины была утеряна, и более человеку не удавалось создать подобного аппарата вплоть до эпохи процветания.

Греческие купцы, имели при себе специальные таблички, на которых была изображена своеобразная система подсчета, отдаленно напоминающую современную таблицу умножения.

Для определения качественных характеристик таких, как килограммы, для подсчета использовались простые весы. Процесс вычислений заключался в следующем: прибор оценивал вес изделия, переводя его в числовое значение.

Процесс эволюции систем для счета происходил в следующей хронологии:

Разработка вычислительных машин не стоит на месте. Ученые говорят о скором появлении оптического или фотонного вычислителя, который сможет работать в 1000 раз быстрее, чем обыкновенный компьютер.

Первые механические вычислительные машины

Главное отличие механической вычислительной техники от современной заключается в использовании при вычислениях механической силы. В механических приборах алгоритмы запускались при помощи шестерней и рычагов, и требовали ручного ввода информации.

Долгий путь эволюции такой вычислительной техники отмечен созданием двух наиболее продвинутых аппаратов Паскаля и Бэббиджа. Эти механические вычислительные машины разработаны в разные времена и использовали прогрессивные методы подсчета чисел.

Вычислительная машина Бэббиджа

Машина Бэббиджа – это универсальный вычислительный прибор, который так и не был создан. До нашего времени дошли чертежи этой машины, на основе которой современные ученые собрали прототип машины и доказали, что разработка была удачной.

Английский математик Чарльз Бэббидж при создании своей машины опирался на труды предшественников 18 века. Основополагающими трактатами для разработки проекта стала работа немецкого ученого Иоганна Мюллера. Книга о механических вычислениях, изданная в 1788 году и труды Гаспара де Порни по созданию иерархической структуры для организации массовых вычислений.

Разностная машина, которая впервые была описана Бэббиджем в 1822 году в своей книге, могла считать значения многочленов до шестой степени. В том же 1822 году, ученый приступил к созданию своего аппарата, сразу по старту проекта, который спонсировало правительство, начались трудности.

Механические вычисления, требовали высочайшей точности в производстве деталей. Небольшие отклонения в расчетах могло привести к высокой погрешности в результате.

Подрядчик, который взялся изготавливать оборудование и запчасти для вычислительной машины, не смог выполнить детали с необходимой точностью. Поэтому машина так и не была собрана, а финансирование проекта в скором времени прекратилось. По оставшимся документам, вычислительный механизм собрали уже в конце 20 века.

Вычислительная машина Паскаля

Ученый Блэз Паскаль вырос в семье французского сборщика налогов. Главной мотивацией для создания суммирующей машины, стало стремление облегчить процесс подсчета налогов. В 1642 году Паскаль занялся разработкой методов и алгоритмов работы будущего устройства.

Счетная машина, которую ученый назвал «Паскалита», представляла собой ящик с наборными колесами. Путем вращения колес вводилось необходимое число, а в верхней части в специальных «окошках», пользователь мог увидеть сумму введенных чисел.

Первоначально, машина могла считать в пределах четырехзначных чисел. В процессе усовершенствования, машина снабдили 8 оконцами, что позволило вести вычисления для более крупных чисел и сложных выражений.

Несмотря на успех, который принесла Паскалю его суммирующая машина, больших объемов продаж добиться не удалось. Это было связано с высокой стоимостью запчастей и сложностями производства.

Хотя именно принцип передачи информации в машине, путем движения связанных между собой колес, более трех веков использовался в производстве и разработке счетных машин по всему миру. Машина Паскаля, была одной из первых реально работающих образцов механической вычислительной техники.

Классификация вычислительных машин

Все вычислительные машины можно разделить на три одинаковые группы, различия которых заключается в методах исчисления данных и способах обработки.

Вычислительные комплексы, системы и сети

К вычислительным комплексам, системам и сетям, относится группа вычислительной техники, которая работает в одном направлении и обеспечивает расчет необходимых величин по данным из нескольких источников. Самым обычным примером вычислительной сети – является компьютерная сеть. Как правило, такие группы оборудования применяются в промышленности, для достижения оптимизации вычислений.

Механические вычислительные машины

В современном виде вычислительные механические машины – это довольно сложное и точное оборудование. Самой распространенной формой механических вычислительных машин являются разнообразные счетчики.

Цифровые вычислительные машины

В цифровых вычислительных машинах, алгоритм расчетов производится, благодаря поступлению определенных дискретных значений, которые в свою очередь после подсчета выводятся на экран в виде цифрового значения.

Большинство ЦВМ используют импульсы или специальный, общепринятый двоичный код. Это сделано, для того чтобы вычислительные комплексы и системы, могли обмениваться между собой информацией «понятной» для всех машин.

Аналоговые вычислительные машины

Главным отличием аналоговой машины от цифровой или механической является беспрерывность действий по обработке данных. При этом вычисления могут вести за собой какое-то механическое, гидравлическое или электронное действие.

Самым ярким примером, является автоматическая коробка передач у автомобиля, которая постоянно получает данные о режимах работы двигателя и соответственно произведенным расчетам переключает скорости.

Электромеханические вычислительные машины

История первых электромеханических машин, начинается вместе с созданием нового электронного элемента – реле. Ведущие разработчики, сразу оценили возможность переделывать механическое движение в определенный электрический код при помощи реле.

Сразу несколько групп инженеров начали заниматься такими машинами в тридцатых годах двадцатого века. В это время развитие электроники пошло быстрее и разработку электромеханических счетных машин быстро закрыли. За неполные 7 лет разработок, на основе релейного действия, было создано две машины – «Марк 1» и «Марк 2».

На современном производстве применение электромеханических машин сведено к минимуму из-за появления более продвинутого оборудования.

Релейные вычислительные машины

После того как электрические реле стали набирать популярность, было создано несколько машин, которые при помощи механической силы могли вести определенные вычисления. Через некоторое время механическую силу полностью заменили силой тока, которая и питала релейную установку.

Первая удачная и надежная машина – РВМ-1 (Релейно вычислительная машина) была создана в 1957 году. Устройство использовало в работе одновременно 550 реле. Скорость подсчета такой машины была 0,5 секунд на выполнение одной операции, при этом устройство могло работать постоянно – без остановок.

РВМ-1 применялась на протяжении 10 лет в финансовой системе. Последний раз на территории нашей страны ее запускали для пересчета финансовой системы СССР в 1967 году. Именно тогда была зафиксирована самая большая нагрузка, и за одну секунду машина смогла выполнить до 20 операций умножения крупных чисел.

Простые вычислительные машины

Примером простых вычислительных машин является самый простой калькулятор. Первые машины этого вида начали выпускаться во второй половине 20-го века. Простая вычислительная машина нуждается в помощи оператора, задачей которого является ввод цифр. Пик развития таких машин пришелся на восьмидесятые года 20 века, а их вид практически не изменился.

Простые вычислительные машины, рассчитаны на обработку таких действий, как:

Упоминание единичных простых машин, можно встретить и в более раннем периоде. Но тогда большой популярностью простые вычислительные машины не пользовались из-за высоких требований к знаниям оператора машины и большой себестоимостью.

Производители и поставщики вычислительных машин

Современные вычислительные машины, в 90% случаев являются персональными компьютерами, на которых установлены специальные программы, позволяющие выполнять необходимые вычисления мгновенно.

Среди представителей этой индустрии можно отметить компании: «НИКС», DNS, Meijin, «МЦСТ», «Т-Платформы» и другие.

Мировыми лидерами являются компании Intel и Kingston. Серверное оборудование является большой вычислительной машиной, которая постоянно обрабатывает и передает данные.

Крупным производителем серверов является компания Dell. На продукции этой компании в мире работает около 23% серверов различного профиля и назначения.

Поставками вычислительной техники занимаются крупные торговые сети, специализирующиеся на компьютерном обеспечении. Заказ партии вычислительных машин можно сделать по интернету или в самом магазине. Некоторые из этих компаний имеют собственные производства по сборке оборудования. Среди поставщиков можно выделить сеть магазинов «Кей», «Ситилинк», «Юлмарт».

Больше о производителях и поставщиках вычислительных машин можно узнать на ежегодной выставке «Связь».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *