Конденсатор аксиальный что это
Конденсатор аксиальный что это
Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.
В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.
Конденсаторы алюминиевые электролитические
Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.
В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!
Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.
Керамические однослойные конденсаторы
Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.
Керамические многослойные конденсаторы
Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.
Керамические высоковольтные конденсаторы
Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.
Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.
Танталовые конденсаторы
Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.
Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.
Полиэстеровые конденсаторы
Например K73-17 или CL21, на основе металлизированной пленки.
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.
Полипропиленовые конденсаторы
Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.
Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.
Конденсатор аксиальный что это
Ах, эти пленочные конденсаторы. Многие, вероятно, наслышаны о них.
Исходя из разных диэлектрических свойств пленки, такие конденсаторы, в качестве разделительных в звуковых цепях, ведут себя несколько по-разному, что, так или иначе, сказывается на звуке. Никакие физические/электромеханические свойства диэлектрика мной не исследовались. Основная мысль статьи – провести некую классификацию пленочников и ближе познакомиться с ними.
Автор: yooree
Немного конструктива
Роль диэлектрика в таких конденсаторах выполняет полимерная пленка. В качестве электродов может использоваться фольга. Но технология здесь достаточно разнообразная.
Бывает, что пленку не укрывают слоем фольги, а металлизируют (тонким слоем металла) посредством вакуумного напыления. Даже возможен обратный вариант – полимерный порошок напыляют на фольгу. И даже существуют промежуточные варианты, когда в конструкции намотки используется и металлизированная пленка и фольга, когда используется двухслойная металлизация пленки и, возможно, еще какие-то техники.
По типу корпуса и/или организации выводных электродов можно провести еще ряд градаций:
– аксиального или радиального типа
– тубулярные или овальные по форме
– индуктивные и неиндуктивные
– боксовые или залитые (компаундом)
Лавсановые (Polyester film capacitor/ Metallized Polyester film capacitor)
1-ая (большая и достаточно распространенная ) группа – конденсаторы с диэлектриком из лавсановой (полиэтилентерефталатной) пленки. Самые доступные из пленочных. Здесь следует различать металлизированный лавсан и неметаллизированный.
Неметаллизированные, как правило, небольшой емкости, небольших размеров. В качестве примеров таковых – отечественные К73-9
Конденсаторы на основе металлизированной пленки
Ближайшие импортные аналоги выглядят так :
Другие импортные серии:
— достаточно популярная серия MKT. Они типично выполнялись боксовыми радиальными. Законодателем “моды” в прошлом веке выступила фирма Siemens. Позже, боксовый тип “подхватили” Wima, AVC, EPCOS и многие другие.
Позже в боксовом корпусе стали выпускать и снабберные (помехоподавляюшие) пленочники, что негативно сказалось на репутации MKT. Укрепилось мнение, что для звука такие “не очень”.
— достаточно заметная группа индуктивных лавсановых неметаллизированных. Их особенность в том, что они индуктивные. Иногда их еще называют майларовыми (mylar), майлар – просто разновидность лавсана.
Это прежде всего серия PEI. Их в некоторых интернет-магазинах рунетеа преподносят как полистирольные, но это развод. Выглядят PEI так –
Предельная емкость у темно-зеленых, как правило, не выше 0,22 мкФ. И, по некоторым сведениям, к подобным относятся и TMCF, которые еще могут называться как CL11.
Как вычислить лавсановый конденсатор по названию его серии?
По наличию латинской буквы “E” – что означает “этилентерефталат”. Хотя бывают и исключения, как с MKT. Вероятно, это немецкий вариант.
Плюс еще азиатские стандарты добавляют путаницы, они предпочитают давать сериям другие названия, типа СL. Иногда стандарты дублируют, при этом пишут дублера в скобках.
Полистирольные (Polystyrene Film Capacitors)
Считается, что полистирольные емкости вносят минимальную окраску и одни из самых стабильных. Проверить это не всегда удается, т.к. надо прежде всего умудриться найти такие конденсаторы. Они не очень распространенные. Еще одна проблема по ним – предельная емкость для этих приборов – типично всего 0,5 мкФ.
Из отечественных более-менее доставабельный К71-7
И еще, по минимальной границе емкости К71-1 тоже “хромает” – выпускают начиная от 1000пФ.
Из импортных (настоящих) полистирольных встречал только серию PSI / PSR, они тоже не самые распространенные, выглядят так –
Предельная емкость еще ниже, до 0,01 мкФ. Но зато минимальная встречается до 68пФ.
Поликарбонатные конденсаторы (Polycarbonate Film Capacitors)
Вероятно, они “вымерли” уже давно. Не видно их и не слышно о них. Из отечественных в истории упоминается о К77-1 с пределами емкостей от 0,001 до 3,9 мкФ. И ходили слухи, что они придают звуку приятную мягкость. Видимо, по аналогии с угольными резисторами. К сожалению, вымерли они из-за активной конкуренции со стороны другого диэлектрика – полифенил-сульфида, производство которого было не таким затратным.
Полифенил-сульфидные конденсаторы (Polyphenylene Sulphide (PPS) capacitors):
Современные заменители поликарбонатных конденсаторов. Редкие и дорогие. Из наиболее известных можно упомянуть серию MU12 американской фирмы Electronic Concepts. Мечта аудиофилов…
Полипропиленовые конденсаторы. (Polypropylene capacitors / Metallized Polypropylene capacitors)
2-ая (большая, но менее распространенная в странах СНГ) группа с диэлектриком из полипропилена. Относительно доступные, могут быть раза в 3-4 дороже лавсановых. Из отечественных еще как-то можно отыскать K78-2 и К78-19 и некоторые другие.
Из импортных выпускаемый спектр очень широк. Начнем с самых ходовых. Для неметаллизированных, к примеру, серия PPN (CBB13), чаще всего бордового или красного цвета.
или темно-синие, иногда,
— Боксовые версии MKP (Wima, Epcos, Evox-Rifa и т.п.) – посолиднее, но репутация слабее из-за корпуса типа box. Опять же, вероятно, потому, что в боксах часто выпускают снабберные пленочники. Пример от Вима –
— тубуляры (цилиндрические или овальные), серий MPA, MPT, MPR и т.п. (CBB20) – хорошая репутация. Выглядят так :
— высоковольтные полипропиленовые серий PPS (CBB81) и им подобные. Неметаллизированные, только фольга и пленка. Номиналы – от 100пФ до 0,47мкФ. Напряжение от 1000 до 3000В. Близкие аналоги отечественных K78-2. Выглядят так –
— снабберные полипропиленовые, типа MKP/X2 (CBBX2), MPX (CBB62X2) и т.п.
Они шумоподавляющие. Ходят слухи, что для звуковых цепей это не лучший вариант. Снабберные легко можно вычислить по обилию значков-сертификатов на корпусе. Выглядеть могут так –
— пусковые полипропиленовые (для двигателей и/или для розжига ламп дневного света)
Насколько они могут быть хороши в звуке – неизвестно. Выглядеть могут так –
Фторопластовые конденсаторы. (Teflon film capacitors)
Наряду с полистирольными, считаются самыми толерантными к звуку емкостями. Опять же редкие. Из отечественных должны где-то существовать такие, как К72П-6, К72-9, ФТ-3…
Заключение
— конечно, идеальных пленочных конденсаторов не существует, здесь на помощь может прийти “бутербродная” техника. И терпение в опробовании разных типов.
— не все типы одинаково хороши для усилителей на любой элементной базе. Лампы “любят” конденсаторы с одним типом диэлектрика, полупроводникиовые конструкции – с другим. Уместность использования определенного конденсатора может быть обусловлена и внутренним импедансом цепи.
— у высоковольтных полипропиленовых конденсаторов и у полистирольных конденсаторов малой емкости есть перспективы удачно проявить себя в отфильтровке ВЧ в пассивных регуляторах тембра и в тонкомпенсации.
Cтатья содержит только краткие сведения, в помощь тем, кто пожелает расширить свой кругозор могут быть полезны следующие источники в сети:
*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]
© DiyAudio Team, 2010-2012
Все материалы ресурса защищены законом об авторском праве.
При публичном использовании, цитировании или копировании обязательна ссылка на наш ресурс
с указанием конкретного имени или ника автора материала.
Конденсатор: что это такое и для чего он нужен
Конденсатор – это устройство, способное накапливать электрический заряд.
Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.
Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.
Содержание статьи
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Устройство конденсаторов
Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:
Пакетная конструкция
Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.
Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.
Трубчатая конструкция
Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.
Дисковая конструкция
Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.
Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.
Литая секционированная конструкция
Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.
Рулонная конструкция
Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.
Где используются конденсаторы
Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.
В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.
К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.
К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.
Поведение конденсатора в цепях постоянного и переменного тока
В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.
При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.
Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.
Виды и классификация конденсаторов
Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.
Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.
Электролитические конденсаторы
В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.
Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.
В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.
У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.
Пленочные и металлопленочные конденсаторы
Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.
Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.
Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.
Основные различия между конденсаторами с разными типами пленок:
Керамические конденсаторы
В керамических конденсаторах в качестве диэлектрика используются керамические пластины.
Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.
Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.
Бумажные и металлобумажные конденсаторы
В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.
Основные параметры конденсаторов
Емкость
Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.
Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.
Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.
Удельная емкость
Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.
Плотность энергии
Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.
Номинальное напряжение
Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.
Полярность
К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.
К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.
Паразитные параметры конденсаторов
Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.
К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:
К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.
Обозначение конденсаторов на схеме
В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.
Обозначение по ГОСТ 2.728-74 | Описание |
| Конденсатор постоянной ёмкости |
| Поляризованный (полярный) конденсатор |
| Подстроечный конденсатор переменной ёмкости |
| Варикап |
Особенности соединения нескольких конденсаторов в цепи
Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.
Последовательное
Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.
Получаемая емкость в такой цепи находится по формуле:
Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.
Параллельное
Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.
Напряжение на всех элементах будет одинаковым.
Маркировка конденсаторов
В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.
Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.
В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.
Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.
На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.
Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:
Как проверить работоспособность конденсатора
Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.
Проверка полярного конденсатора
При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.
После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).
Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.
Проверка неполярного конденсатора
В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.
Как зарядить и разрядить конденсатор
Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.
Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.